Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C D I E 1
a) Tam giác BIA bằng tam giác BIE theo trường hợp GCG (cạnh chung AI)
b) tam giác ABD vuông tại A nên \(\widehat{ABD}=90^o-\widehat{D_1}\) (1)
Tam giác AID vuông ở I nên \(\widehat{IAD}=90^o-\widehat{D_1}\) (2)
Từ (1) và (2) suy ra \(\widehat{ABD}=\widehat{IAD}\), hay là \(\widehat{ABD}=\widehat{EAC}\)
c) Theo câu a) tam giác BIA bằng tam giác BIE nên suy ra BA = BE.
Xét 2 ta giác: BAD và BED có AD chung, BA = BE và góc BAD = góc EAD
=> Tam giác BAD = tam giác BED => Tam giác BED vuông ở E
Bạn xem lời giải ở đường link dưới:
Câu hỏi của Nguyễn Ngọc Vy - Toán lớp 7 - Học toán với OnlineMath
lời giải câu c) nè bn...
Hình thì bn tự vẽ nha....
c) Xét tam giác BAD và tam giác BED ta có:
+> BA=BE (cmt câu b)
+> Góc ABD = góc EBD (vì BD là phân giác của góc ABC)
+> Chung cạnh BD
=> Tam giác BAD = tam giác BED (c-g-c)
=> góc BAD = góc BED
Mà góc BAD = 90độ
=> Góc BED =90 độ
=> Tam giác BED vuông tại E (ĐPCM)
Bn vẽ xg hình là nhìn ra ngay ý ạ....
Nếu thấy đúng tích cho mk nha...
Câu c) Bạn tự vẽ hình nha
Do BD là phân giác góc \(\widehat{ABC}\)
=> \(\widehat{DBC}=\widehat{DBA}\)
- Xét \(\Delta DBE\)và \(\Delta DBA\)
BD chung
\(\widehat{DBC}=\widehat{DBA}\)
BE = BA (câu b)
=> \(\Delta DBE\)= \(\Delta DBA\)(c.g.c)
=> \(\widehat{BAD}=\widehat{BED}\)
Lại có \(\Delta ABC\)vuông tại A
=> \(\widehat{BAD}=90^o\)
=> \(\widehat{BED}=90^o\)
=> \(\Delta BED\)vuông tại E (đpcm)
BÀI 1 cho tam giác ABC vuông tại A.Kẻ BD là phân giác của góc B.Kẻ AI vuông góc BD tại I.AI cắt BC tại E
a) chứng minh AB=EB
b) chứng minh tam giác BED vuông
c) DE cắt AB tại F, chứng minh AE//FC
BÀI 2 cho tam giác ABC cân tại A, có BD và CE là hai đường trung tuyến cắt nhau tại I
a) chứng minh tam giác IBC cân
b)lấy O thuộc tia IC sao cho IO=IE.Gọi K là trung điểm của IA.Chứng minh AO, BD, CK đồng quy
BÀI 3 cho tam giác ABC cân tại A, kẻ tia phân giác của góc BAC cắt BC tại H.Biết AB=15cm, BC=18cm
a)so sánh góc A và góc C
b)chứng minh rằng tam giác ABH = tam giác ACH
c)vẽ trung tuyến BD của tam giác ABC cắt AH tại G.Chứng minh rằng: tam giác AEG = tam giác ADG
d)tính độ dài AG
e) kẻ đường thẳng CG cắt AB ở E, chứng minh rằng: tam giác AEG = tam giác ADG
BÀI 4 cho tam giác ABC vuông tại A, trên BC lấy điểm D sao cho BA=BD.Qua D kẻ đường vuông góc với BC cắt AC tại E, qua C kẻ đường vuông góc với BE tại H cắt AB tại F
a)chứng minh tam giác ABE = tam giác DBE
b) chứng minh tam giác BCF cân
c) chứng minh 3 điểm F.D,E thẳng hàng
d)trên cạnh CB lấy điểm M sao cho CA=CM.Tính số đo góc DAM
BÀI 5 cho tam giác ABC cân tại A, kẻ BD vuông góc AC, kẻ CE vuông góc AB, BD và CE cắt nhau tại I
a)chứng minh rằng tam giác BDC = tam giác CEB
b)so sánh góc IBE và góc ICD
c) đường thẳng AI cắt BC tại H, chứng minh AI vuông góc BC tại H
BÀI 6 cho tam giác ABC vuông tại A, biết AB=6cm, AC=8cm
a)tính BC
b)trung trực của BC cắt AC tại D và cắt AB tại F, chứng minh góc DBC=DCB
c) trên tia đối của tia DB lấy E sao cho DE=DC, chứng minh tam giác BCE vuông và DF là phân giác góc ADE
d) chứng minh BE vuông góc FC
Ta có: ΔABC đều, D ∈ AB, DE⊥AB, E ∈ BC
=> ΔBDE có các góc với số đo lần lượt là: 300
; 600
; 900
=> BD=1/2BE
Mà BD=1/3BA => BD=1/2AD => AD=BE => AB-AD=BC-BE (Do AB=BC)
=> BD=CE.
Xét ΔBDE và ΔCEF: ^BDE=^CEF=900
; BD=CE; ^DBE=^ECF=600
=> ΔBDE=ΔCEF (g.c.g) => BE=CF => BC-BE=AC-CF => CE=AF=BD
Xét ΔBDE và ΔAFD: BE=AD; ^DBE=^FAD=600
; BD=AF => ΔBDE=ΔAFD (c.g.c)
=> ^BDE=^AFD=900
=>DF⊥AC (đpcm).
b) Ta có: ΔBDE=ΔCEF=ΔAFD (cmt) => DE=EF=FD (các cạnh tương ứng)
=> Δ DEF đều (đpcm).
c) Δ DEF đều (cmt) => DE=EF=FD. Mà DF=FM=EN=DP => DF+FN=FE+EN=DE+DP <=> DM=FN=EP
Lại có: ^DEF=^DFE=^EDF=600=> ^PDM=^MFN=^NEP=1200
(Kề bù)
=> ΔPDM=ΔMFN=ΔNEP (c.g.c) => PM=MN=NP => ΔMNP là tam giác đều.
d) Gọi AH; BI; CK lần lượt là các trung tuyến của ΔABC, chúng cắt nhau tại O.
=> O là trọng tâm ΔABC (1)
Do ΔABC đều nên AH;BI;BK cũng là phân giác trong của tam giác => ^OAF=^OBD=^OCE=300
Đồng thời là tâm đường tròn ngoại tiếp tam giác => OA=OB=OC
Xét 3 tam giác: ΔOAF; ΔOBD và ΔOCE:
AF=BD=CE
^OAF=^OBD=^OCE => ΔOAF=ΔOBD=ΔOCE (c.g.c)
OA=OB=OC
=> OF=OD=OE => O là giao 3 đường trung trực Δ DEF hay O là trọng tâm Δ DEF (2)
(Do tam giác DEF đề )
/
(Do tam giác DEF đều)
Dễ dàng c/m ^OFD=^OEF=^ODE=300
=> ^OFM=^OEN=^ODP (Kề bù)
Xét 3 tam giác: ΔODP; ΔOEN; ΔOFM:
OD=OE=OF
^ODP=^OEN=^OFM => ΔODP=ΔOEN=ΔOFM (c.g.c)
OD=OE=OF (Tự c/m)
=> OP=ON=OM (Các cạnh tương ứng) => O là giao 3 đường trung trực của ΔMNP
hay O là trọng tâm ΔMNP (3)
Từ (1); (2) và (3) => ΔABC; Δ DEF và ΔMNP có chung trọng tâm (đpcm).
a) Xét ΔBIA vuông tại I và ΔBIE vuông tại I có
BI là cạnh chung
\(\widehat{ABI}=\widehat{EBI}\)(BD là tia phân giác của \(\widehat{ABC}\), I∈BD, E∈BC)
Do đó: ΔBIA=ΔBIE(cạnh góc vuông-góc nhọn kề)
b) Ta có: ΔBIA=ΔBIE(cmt)
⇒BA=BE(hai cạnh tương ứng)
c) Xét ΔBAD và ΔBED có
BA=BE(cmt)
\(\widehat{ABD}=\widehat{EBD}\)(BD là tia phân giác của \(\widehat{ABC}\), E∈BC)
BD là cạnh chung
Do đó: ΔBAD=ΔBED(c-g-c)
⇒\(\widehat{BAD}=\widehat{BED}\)(hai góc tương ứng)
mà \(\widehat{BAD}=90^0\)(\(\widehat{BAC}=90^0\), D∈AC)
nên \(\widehat{BED}=90^0\)
Xét ΔBED có \(\widehat{BED}=90^0\)(cmt)
nên ΔBED vuông tại E(định nghĩa tam giác vuông)