Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: BC=BH+CH
=2+8
=10(cm)
Xét ΔABC vuông tại A có AH là đường cao
nên \(AH^2=HB\cdot HC\)
=>\(AH=\sqrt{2\cdot8}=4\left(cm\right)\)
Xét ΔABC vuông tại A có AH là đường cao
nên \(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot CB\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}AB=\sqrt{2\cdot10}=2\sqrt{5}\left(cm\right)\\AC=\sqrt{8\cdot10}=4\sqrt{5}\left(cm\right)\end{matrix}\right.\)
b: Xét tứ giác ADHE có
\(\widehat{ADH}=\widehat{AEH}=\widehat{DAE}=90^0\)
=>ADHE là hình chữ nhật
=>DE=AH
c: ΔHDB vuông tại D
mà DM là đường trung tuyến
nên DM=HM=MB
\(\widehat{EDM}=\widehat{EDH}+\widehat{MDH}\)
\(=\widehat{EAH}+\widehat{MHD}\)
\(=90^0-\widehat{C}+\widehat{C}=90^0\)
=>DE vuông góc DM
a: ΔABC vuông tại A có AM là trung tuyến
nên MA=MC=MB
=>góc MAC=góc MCA=góc BAH
b: góc ADH=góc AEH=góc DAE=90 độ
=>ADHE là hình chữ nhật
góc EAM+góc AED
=góc AHD+góc MCA
=góc ABC+góc MCA=90 độ
=>AM vuông góc ED
Theo đkđb thì $AI^2=AD.AE$. Vì vậy, nếu muốn $AI^2=DE.AE$ thì $AD=DE$ (điều này vô lý vì $AD<DE$ theo tính chất cạnh huyền trong tam giác vuông.
a: góc ADH=góc AEH=góc DAE=90 độ
=>ADHE là hcn
b: DA*DB+EA*EC
=DH^2+EH^2
=DE^2=AH^2=HB*HC
a, Xét tam giác ABH vuông tại H, đường cao HG
Ta có : \(NH^2=AB.BG\)( hệ thức lượng )
b, Xét tam giác AHC vuông tại H, đường cao HK
Ta có : \(AH^2=AK.AC\)( hệ thức lượng ) (1)
Xét tam giác ABC vuông tại A, đường cao AH
Ta có : \(AH^2=HB.HC\)( hệ thức lượng ) (2)
Từ (1) ; (2) suy ra : \(AK.AC=HB.HC\Rightarrow\frac{AC}{HC}=\frac{HB}{AK}\)
Xét tứ giác ADHE có:
\(\widehat{BAC}=\widehat{ADH}=\widehat{AEH}=90^0\)
=> Tư giác ADHE là hình chữ nhật
\(\Rightarrow DE=AH\left(1\right)\)
Áp dụng HTL trong tam giác ABC vuông tại A có đường cao AH
\(AH^2=HB.HC\left(2\right)\)
\(\left(1\right),\left(2\right)\Rightarrow DE^2=HB.HC\)
Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC
nên \(AH^2=HB\cdot HC\left(1\right)\)
Xét tứ giác ADHE có
\(\widehat{ADH}=\widehat{AEH}=\widehat{DAE}=90^0\)
Do đó: ADHE là hình chữ nhật
Suy ra: AH=DE(2)
Từ (1) và (2) suy ra \(DE^2=HB\cdot HC\)