Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C D E 6 H
a) BC = \(\sqrt{AB^2+AC^2}\)= \(\sqrt{6^2+8^2}\)= \(\sqrt{100}\)= 10 (theo định lí Pythagoras)
\(\Delta\)ABC có BD là phân giác => \(\frac{AD}{AB}\)= \(\frac{CD}{BC}\)= \(\frac{AD}{DC}\)= \(\frac{AB}{BC}\)= \(\frac{6}{10}\)= \(\frac{3}{5}\).
b) Ta có : \(\widehat{ABE}\)= \(\widehat{EBC}\)(BD là phân giác)
=> \(\Delta ABD\)~ \(\Delta EBC\)(gg)
=> \(\frac{BD}{BC}\)= \(\frac{AD}{EC}\)<=> BD.EC = AD.BC (đpcm).
c) Ta có : \(\Delta CHE\)~ \(\Delta CEB\)( 2 tam giác vuông có chung góc C )
=> \(\frac{CH}{CE}\)= \(\frac{CE}{CB}\)<=> CH.CB = CE2 (1)
\(\Delta CDE\)~ \(\Delta BDA\)(gg (2 góc đối đỉnh))
\(\Delta BDA~\Delta BCE\) (câu b))
=> \(\Delta CDE~\Delta BCE\)
=> \(\frac{CE}{BE}\)= \(\frac{DE}{CE}\)<=> BE.DE = CE2 (2)
Từ (1) và (2) => CH.CB = ED.EB (đpcm).
A B C 9 12 D E
a, Xét tam giác ABC và tam giác EDC ta có :
^C _ chung
\(\frac{BC}{DC}=\frac{AC}{EC}\)
^BAE = ^CED = 90^0
=> tam giác ABC ~ tam giác CED ( g.c.g )
HAB ? ^H ở đâu bạn ?
b, Vì AD là tia phân giác tam giác ABC ta có :
\(\frac{AB}{AC}=\frac{BD}{DC}\Leftrightarrow\frac{9}{12}=\frac{BD}{DC}\)
hay \(\frac{BD}{DC}=\frac{9}{12}\)tự tính BD và CD nhé
c, Vì AB vuông AC ; DE vuông AC => AB // DE. Áp dụng hệ quả Ta lét :
\(\frac{CE}{BC}=\frac{DE}{AB}\)thay dữ liệu bên phần b tính
d, Áp dụng Py ta go với dữ kiện bên trên tìm tí số
Vì DE la dg pg cua goc ADB (gt)
=.>AD/DB= AE/EB (h chat dg pg trong tam giac) (1)
Vi DF la dg pg cua goc ADC (gt)
=>FC/FA=ĐC/ĐÁ ( tính chất đg pg trong tam giác) (2)
tu (1) va (2) suy ra:EA/EB.FC/FA.DB.DC=AD/DB.DB/DC.DC/DA=1 (dpcm)
Vì DE la dg pg cua goc ADB (gt)
=.>AD/DB= AE/EB (h chat dg pg trong tam giac) (1)
Vi DF la dg pg cua goc ADC (gt)
=>FC/FA=ĐC/ĐÁ ( tính chất đg pg trong tam giác) (2)
tu (1) va (2) suy ra:EA/EB.FC/FA.DB.DC=AD/DB.DB/DC.DC/DA=1 (dpcm)
A B C H D E
a. Xét 2 tam vuông HAB và ABC:
\(\widehat{B}\) chung
Suy ra: \(\Delta HBA\sim\Delta ABC\) (g.g)
=> \(\frac{AB}{BC}=\frac{HB}{AB}\)
=> AB2 = HB.BC
b. Xét tam giác vuông ABC có : BC2 = AB2 + AC2
Hay BC2 = 122 + 162
=> BC2 = 144 + 256 = 400
=> BC = \(\sqrt{400}=20\) (cm)
Tam giác ABC có: AD là đường phân giác của \(\widehat{ABC}\)
=> \(\frac{AB}{AD}=\frac{BC}{CD}\) (Tính chất đường phân giác của tam giác)
Hay\(\frac{AB}{AD}=\frac{BC}{AC-AD}\)
=> \(\frac{12}{AD}=\frac{20}{16-AD}\)
=> 12(16 - AD) = 20AD
=> 192 - 12AD = 20AD
=> -12AD - 20AD = -192
=> -32AD = -192
=> AD = 6 (cm)
c. Để mình giải sau nha bạn!!!
Câu c) :
Xét tam giác vuông ABD ta có : BD2 = AB2 + AD2
Hay BD2 = 122 + 62
BD2 = 144 + 36 = 180
=> BD = \(\sqrt{180}=6\sqrt{5}\) (cm)
Ta có : AD + DC = AC
Hay 6 + DC = 16
=> DC = 16 - 6 = 10 (cm)
Ta có : \(\Delta HBA\sim\Delta ABC\) (C/M ở câu a)
=> \(\frac{HB}{AB}=\frac{AB}{BC}\)
Hay \(\frac{HB}{12}=\frac{12}{20}\)
=> HB = \(\frac{12.12}{20}\) = 7,2 (cm)
Xét 2 tam giác vuông ABD và HBE:
\(\widehat{ABD}=\widehat{HBE}\) (BD là đường phân giác của \(\widehat{ABC}\))
Suy ra: \(\Delta ABD\sim\Delta HBE\) (g.g)
=> \(\frac{AB}{HB}=\frac{BD}{BE}\)
Hay \(\frac{12}{7,2}=\frac{6\sqrt{5}}{BE}\)
=> BE = \(\frac{7,2.6\sqrt{5}}{12}=\frac{18\sqrt{5}}{5}\)
Ta có : \(\frac{6}{10}=\frac{\frac{18\sqrt{5}}{5}}{6\sqrt{5}}\)
Hay \(\frac{DA}{DC}=\frac{BE}{BD}\) (đpcm)