K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 3 2019

A B C H M D

a, xét tam giác CMD và tam giác BMA có : AM = MD (gt)

MB = MC do M là trung điểm của BC (Gt)

góc CMD = góc AMB (đối đỉnh )

=> tam giác CMD = tam giác BMA (c - g - c)

=> góc ABM = góc DCM (định nghĩa)

b, góc ABM = góc DCM (Câu a) mà 2 góc này so le trong

=>  CD // AB (đl)

mà CA _|_ AB do tam giác ABC vuông tại A (gt)

=> CA _|_ CD (dl)

=> góc ACD = 90 (đn)

=> tam giác ACD vuông tại C (đn)

c,  xét tam giác ABC và tam giác CDA có : AC chung

góc ABC = góc CDA = 90

AB = CD do tam giác CMD = tam giác BMA (câu a)

=> tam giác ABC = tam giác CDA (2cgv)

=> AD = CB (đn)

M là trung điểm của CB =>  CM = 1/2BC 

CM = MA

 do tam giác CMD = tam giác BMA (Câu a)

=> MA = 1/2BC 

d, 

a: Xét ΔMAB và ΔMDC có

MA=MD

\(\widehat{AMB}=\widehat{DMC}\)(hai góc đối đỉnh)

MB=MC

Do đó: ΔMAB=ΔMDC

=>\(\widehat{MAB}=\widehat{MDC}\)

mà hai góc này là hai góc ở vị trí so le trong

nên AB//CD

b: Xét ΔEMB vuông tại E và ΔFMC vuông tại F có

MB=MC

\(\widehat{EMB}=\widehat{FMC}\)(hai góc đối đỉnh)

Do đó: ΔEMB=ΔFMC

=>EM=FM

=>M là trung điểm của EF

19 tháng 12 2021

\(a,\left\{{}\begin{matrix}AM=MD\\BM=MC\\\widehat{AMB}=\widehat{CMD}\end{matrix}\right.\Rightarrow\Delta AMB=\Delta DMC\left(c.g.c\right)\\ \Rightarrow\widehat{ABM}=\widehat{DCM}\\ \text{Mà 2 góc này ở vị trí so le trong nên }AB\text{//}CD\\ b,AH\bot BC;DK\bot BC\Rightarrow AH\text{//}DK\\ \left\{{}\begin{matrix}AM=MD\\\widehat{AHM}=\widehat{DKM}=90^0\\\widehat{AMH}=\widehat{KMD}\left(đđ\right)\end{matrix}\right.\Rightarrow\Delta AHM=\Delta DKM\left(c.g.c\right)\\ \Rightarrow AH=DK\)

19 tháng 12 2021

a: Xét tứ giác ABDC có

M là trung điểm của BC

M là trung điểm của AD

Do đó: ABDC là hình bình hành

Suy ra: AB//CD

a.
Xét tam giác AHM và tam giác DCM có:
AM = DM (gt)
AMH = DMC (2 góc đối đỉnh)
MH = MC (M là trung điểm của HC)
=> Tam giác AHM = Tam giác DCM (c.g.c)
b.
AHM = DCM (tam giác AHM = tam giác DCM)
mà AHM = 90độ
=> DCM = 90độ
Tam giác ABC vuông tại A có:
ABC + ACB = 90độ
60độ  + ACB = 90độ
ACB = 90  - 60
ACB = 30độ
ACD = ACB + DCM = 30  + 90  = 120độ

22 tháng 2 2019

a) C/M tam giác AHM= tam giác DCM

Xét tam giác AHM và tam giác DCM, ta có:

MA=MD (gt)
góc AMH= góc DMC (đđ)

MH=MC (gt)

Vậy tam giác AHM= tam giác DCM (c-g-c)

b) Tính góc ACD

Ta có tam giác ABC vuông tại A có góc B=600 nên góc ACB=300

Lại có góc MCD= góc AHM = 900 (hai tam giác bằng nhau)

Vậy góc ACD= 300 + 900 = 1200

c) C/M AK=CD

Trong tam giác AHK, ta có AN đường cao đồng thời là trung tuyến ( AN vuông góc HK và NH=NK)

Nên tam giác AHK cân tại A

Suy ra AK=AH

Mà AH=CD (hai tam giác bằng nhau)

Vậy AK=CD

d) C/M K, H, D thẳng hàng

Ta có tam giác AHC= tam giác DCH ( c-g-c)

Nên góc ACH= góc DHC

Mà hai góc này ở vị trí so le trong

Suy ra AC//HD

Lại có HK//AC ( cùng vuông góc với AB)

Vậy K, H, D thẳng hàng