Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

A B C H D 35 o
a) Xét tam giác AHB và tam giác DBH có:
AH=BD (giả thiết)
Góc AHB=góc DBH (=90o)
BH là cạnh chung
=> Tam giác AHB = tam giác DBH (c.g.c)
b) Theo chứng minh phần a: Tam giác AHB = tam giác DBH => Góc ABH = góc BHD (2 góc tương ứng)
Mà góc ABH và góc BHD là 2 góc so le trong => AB//DH
c) Tam giác ABH có: \(\widehat{BAH}+\widehat{AHB}+\widehat{ABH}=180^o\) (tổng 3 góc trong tam giác)
=>\(35^o+90^o+\widehat{ABH}=180^o\Rightarrow\widehat{ABH}=180^o-35^o-90^o=55^o\)
Tam giác ABC có: \(\widehat{BAC}+\widehat{ACB}+\widehat{ABC}=180^o\)(tổng 3 góc trong tam giác)
=>\(90^o+\widehat{ACB}+55^o=180^o\Rightarrow\widehat{ACB}=180^o-90^o-55^o=35^o\)

a: ta có: DK⊥AH
EM⊥AH
Do đó: DK//EM
ta có: \(\hat{DAK}+\hat{DAB}+\hat{BAH}=180^0\)
=>\(\hat{DAK}+\hat{BAH}=180^0-90^0=90^0\)
mà \(\hat{BAH}+\hat{HBA}=90^0\) (ΔHAB vuông tại H)
nên \(\hat{DAK}=\hat{HBA}\)
Ta có: \(\hat{EAM}+\hat{EAC}+\hat{HAC}=180^0\)
=>\(\hat{EAM}+\hat{HAC}=180^0-90^0=90^0\)
mà \(\hat{HAC}+\hat{ACH}=90^0\) (ΔAHC vuông tại H)
nên \(\hat{EAM}=\hat{ACH}\)
Xét ΔKAD vuông tại K và ΔHBA vuông tại H có
AD=BA
\(\hat{KAD}=\hat{HBA}\)
Do đó: ΔKAD=ΔHBA
=>KD=HA
Xét ΔMAE vuông tại M và ΔHCA vuông tại H có
AE=CA
\(\hat{MAE}=\hat{HCA}\)
Do đó: ΔMAE=ΔHCA
=>ME=HA
mà KD=HA
nên ME=KD
b: Xét ΔIKD vuông tại K và ΔIME vuông tại M có
KD=ME
\(\hat{IDK}=\hat{IEM}\) (hai góc so le trong, DK//EM)
Do đó: ΔIKD=ΔIME
=>ID=IE
=>I là trung điểm của DE
ai trả lời giúp em câu này với