K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 2 2019

A B C M H N

Ta có:

BM=BA

=> Tam giác ABM cân tại B

=> \(\widehat{BAM}=\widehat{BMA}\)

mà \(\widehat{BAM}+\widehat{MAC}=90^o\)

=> \(\widehat{BMA}+\widehat{MAC}=90^o\)

mặt khác \(\widehat{HMA}+\widehat{HAM}=90^o\)

=> \(\widehat{HAM}=\widehat{MAC}\)(1)

Ta có: AH=AN (2)

AM chung (3)

=>Tam giác AHM=ANM

=> \(\widehat{ANM}=\widehat{AHM}=90^o\)

=> AC vuông MN

b) => Tam giác MNC vuông tại N có cạnh huyền MC

=> MC>NC

=> AN+BC=BM+MC+AN=AB+MC+AN>AB+NC+AN=AB+BC

=> dpcm

18 tháng 4 2020

Cho tam giác ABC có vuông tại A AH vuông góc BC cmr AH+BC>AB +AC

28 tháng 2 2019

Câu hỏi của Bỉ Ngạn Hoa - Toán lớp 7 - Học toán với OnlineMath

Em tham khảo nhé!

14 tháng 3 2020

5234kg....................tạ   

6005dm2...............m2

4027mm.....................m ...................mm

4,25tan....................kg

32,9km2......................hm2

68dm2....................m2

8 tháng 1 2018

B C A D E M N I H K

a) Ta thấy \(\widehat{ECN}=\widehat{ACB}\)  (Hai góc đối đỉnh)

Tam giác ABC cân tại A nên \(\widehat{ACB}=\widehat{ABC}\Rightarrow\widehat{ECN}=\widehat{DBM}\)

Xét tam giác vuông BDM và CEN có:

BD = CE

\(\widehat{ECN}=\widehat{DBM}\)  (cmt)

\(\Rightarrow\Delta BDM=\Delta CEN\)  (Cạnh góc vuông và góc nhọn kề)

\(\Rightarrow BM=CN\)   (Hai cạnh tương ứng)

b) Do \(\Delta BDM=\Delta CEN\Rightarrow MD=NE\)

Ta thấy MD và NE cùng vuông góc BC nên MD // NE 

Suy ra \(\widehat{DMI}=\widehat{ENI}\)   (Hai góc so le trong)

Xét tam giác vuông MDI và NEI có:

MD = NE

\(\widehat{DMI}=\widehat{ENI}\)

\(\Rightarrow\Delta MDI=\Delta NEI\)  (Cạnh góc vuông và góc nhọn kề)

\(\Rightarrow MI=NI\)

Xét tam giác KMN có KI là đường cao đồng thời trung tuyến nên KMN là tam giác cân tại K.

c) Ta có ngay \(\Delta ABK=\Delta ACK\left(c-g-c\right)\Rightarrow\widehat{ABK}=\widehat{ACK}\)    (1)  và BK = CK

Xét tam giác BMK và CNK có:

BM = CN (cma)

MK = NK (cmb)

BK = CK (cmt)

\(\Rightarrow\Delta BMK=\Delta CNK\left(c-g-c\right)\Rightarrow\widehat{MBK}=\widehat{NCK}\)   (2)

Từ (1) và (2) suy ra \(\widehat{ACK}=\widehat{NCK}\)

Chúng lại là hai góc kề bù nên \(\widehat{ACK}=\widehat{NCK}=90^o\)

Vậy \(KC\perp AN\)

16 tháng 9 2018

dvdtdhnsrthwsrh

a: ΔCAM cân tại C

=>góc CAM=góc CMA

b: góc HAM+góc CMA=90 độ

góc BAM+góc CAM=90 độ

mà góc CMA=góc CAM

nên góc HAM=góc BAM

=>ĐPCM

c: Xét ΔAHM và ΔANM có

AH=AN

góc HAM=góc NAM

AM chung

=>ΔAHM=ΔANM

=>góc AHM=góc ANM=90 độ

=>MN vuông góc AB

27 tháng 1 2021

Xét tg BAD có: BD = BA(gt) =>  tg BAD cân tại B 

=> ^BAD = ^BDA (TC tg cân)

Ta có: ^BAD + ^CAD = ^BAC = 90 độ

Mà ^CAD + ^ADE =  ^DEA = 90 độ

=>  ^BAD = ^ADE

Lại có: ^BAD = ^BDA (tg BAD cân tại B )

=> ^ADE = ^BDA

Xét tg vuông AHD và tg vuông ADE:

^ADE = ^BDA (cmt)

AD chung

=> tg vuông AHD = tg vuông ADE (ch - gn)

=> AE = AH ( 2 cạnh tg ứng)

Xét ΔBAD có BA=BD(gt)

nên ΔBAD cân tại B(Định nghĩa tam giác cân)

nên \(\widehat{BAD}=\widehat{BDA}\)(hai góc ở đáy)

hay \(\widehat{BAD}=\widehat{HDA}\)(1)

Ta có: \(\widehat{BAD}+\widehat{CAD}=\widehat{BAC}\)(tia AD nằm giữa hai tia AB,AC)

nên \(\widehat{BAD}+\widehat{EAD}=90^0\)(2)

Ta có: ΔHDA vuông tại H(AH\(\perp\)HD)

nên \(\widehat{DAH}+\widehat{HDA}=90^0\)(hai góc nhọn phụ nhau)(3)

Từ (1), (2) và (3) suy ra \(\widehat{EAD}=\widehat{HAD}\)

Xét ΔADH vuông tại H và ΔAED vuông tại E có 

AD chung

\(\widehat{HAD}=\widehat{EAD}\)(cmt)

Do đó: ΔADH=ΔAED(cạnh huyền-góc nhọn)

hay AH=AE(hai cạnh tương ứng)

12 tháng 5 2023

a) Xét ΔABE vuông tại E & ΔNBE vuông tại E có:

- BE là cạnh chung, BN = BA (giả thuyết)

Suy ra ΔABE = ΔNBE (cạnh huyền - cạnh góc vuông)

b) Theo đề ta có BH vuông góc với AD và HA = HD

Suy ra BH là đường trung trực của AD

Suy ra BA = BD (vì B nằm trên đường trung trực của AD)

c) Trong ΔNAB có AH và BE là đường cao, đồng quy tại điểm K

Suy ra NK là đường cao của ΔNAB, hay NK vuông góc với AB

Mà AC cũng vuông góc với AB, suy ra NK // CA

13 tháng 5 2023

a. - Vì BE vuông góc với AN (gt)
=> tam giác ABE vuông tại E (tc)
     tam giác NBE vuông tại E (tc)
- Xét tam giác vuông ABE và tam giác vuông NBE, có:
    + Chung BE
    + BA = BN (gt)
=> tam giác vuông ABE = tam giác vuông NBE (Cạnh huyền - cạnh  góc vuông)

b. - Vì AH là đường cao của tam giác ABC (gt)
=> tam giác ABH vuông tại H
     tam giác DBH vuông tại H
- Xét tam giác vuông ABH và tam giác vuông DBH, có:
    + Chung BH
    + HA = HD (gt)
=> tam giác vuông ABH = tam giác vuông DBH (2 cạnh góc vuông)
    => BA = BD (2 cạnh tương ứng)