\(\in\)BC)

Chứng minh:

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 1 2022

a: Ta có: \(\widehat{BMA}+\widehat{ABM}=90^0\)

\(\widehat{BMD}+\widehat{DBM}=90^0\)

mà \(\widehat{ABM}=\widehat{DBM}\)

nên \(\widehat{BMA}=\widehat{BMD}\)

c: Xét ΔBAM vuông tại A và ΔBDM vuông tại D có 

BM chung

\(\widehat{ABM}=\widehat{DBM}\)

Do đó: ΔBAM=ΔBDM

Suy ra: MA=MD

Xét ΔAME vuông tại A và ΔDMC vuông tại D có 

MA=MD

\(\widehat{AME}=\widehat{DMC}\)

Do đó: ΔAME=ΔDMC

25 tháng 2 2017

Nhiều thế.

Bài 1: 

B C A

Xét \(\Delta ABC\)có \(AB=AC\)

\(\Rightarrow\Delta ABC\)cân tại \(A\)

\(\Rightarrow\widehat{B}=\widehat{C}=70\)độ

\(\Rightarrow\widehat{A}=180-70-70\)

\(\Rightarrow\widehat{A}=40\)độ

(Mình làm hơi nhanh khúc tính nhé tại đang bận!)

25 tháng 2 2017

Tiếp nè: Bài 2

  A B C H

Bạn xét 2 lần pytago là ra nhé. Lần 1 với \(\Delta AHC\). Lần 2 với \(\Delta AHB\). Thế là xong 2 câu a,b

Bài 3: 

B A C H

a) Ta có \(\Delta ABC\)cân tại \(A\)

\(\Rightarrow AH\)vừa là đường cao vừa là trung tuyến

\(\Rightarrow HB=HC\)

b) Câu này không có yêu cầu.

c + d: Biết là \(\widehat{HDE}=90\)và \(\Delta HDE\)nhưng không nghĩ ra cách làm :(

b a c h e d

a) có tam giác abc cân tại a mà ah là phân giác của bac => ah cũng là đường trung truyến => bh=hc=bc/2=8/2=4cm

xét tam giác vuông ahc có \(AC^2=AH^2+HC^2=3^2+4^2=9+15=25\Rightarrow AC=5CM\)

B) xét tam giác vuông aeh và tam giác vuông adh 

có ah chung ; aeh= dah ( vì tam giác abc cân mà ah là đường cao => ah là phân giác )

=> tam giác vuông aeh = tam giác vuông adh  ( trường hợp cạnh huyền - góc nhọn )  => ae =ad => dpcm

c) có ae = ad ( câu a ) => tam giác aed cân => aed= aed= \(\frac{180^0-A}{2}\) (1)

có tam giác abc cân a ( đề bài ) => abc = acb = \(\frac{180^o-A}{2}\)(2) 

từ (1) và (2)  => aed = abc = ade=acb hay aed=abc mà 2 góc này ở vị trí so le trong

=. ed//bc 

4 tháng 3 2018

(Bạn tự vẽ hình giùm)

a/ \(\Delta HAB\)vuông và \(\Delta HCB\)vuông có: AB = CB (\(\Delta ABC\)cân tại A)

Cạnh HB chung

=> \(\Delta HAB\)vuông = \(\Delta HCB\)vuông (cạnh huyền - cạnh góc vuông) => HA = HC (hai cạnh tương ứng)

b/ \(\Delta AHD\)vuông và \(\Delta CHE\)vuông có: HA = HC (cm câu a)

\(\widehat{A}=\widehat{C}\)(\(\Delta ABC\)cân tại A)

=> \(\Delta AHD\)vuông = \(\Delta CHE\)vuông (cạnh huyền - góc nhọn) => HD = HE (hai cạnh tương ứng)

c/ Ta có \(\Delta AHD\)\(\Delta CHE\)(cm câu b) => AD = CE (hai cạnh tương ứng) (1)

và AB = AC (\(\Delta ABC\)cân tại A) (2)

Lấy (2) trừ (1) => AB - AD = AC - CE

=> BD = BE => \(\Delta BDE\)cân tại B

4 tháng 3 2018

B A C H D E

8 tháng 1 2018

tam giác ABH vuông tại H ( AH vuong goc BC) \(\Rightarrow\) \(AB^2=BH^2+AH^2\left(pytago\right)\)

tg AHC vuông tại H \(\Rightarrow AC^2=AH^2+HC^2\) 

CÓ \(AB^2+CH^2=BH^2+AH^2+CH^2\) (1)

VÀ \(AC^2+BH^2=AH^2+HC^2+BH^2\) (2)

TỪ (1),(2) \(\Rightarrow\) \(AB^2+CH^2=AC^2+BH^2\)

11 tháng 1 2019

A B C M H

Xét tam giác ABC vuông tại A.

Theo định lí Pytago,ta có:\(AB^2+AC^2=BC^2\)

\(\Rightarrow AC^2=BC^2-AB^2=\left(CH+BH\right)^2-\left(AM+BM\right)^2\)

Gọi độ dài CH là a; BH là b. Đặt AM = BM = c (a,b,c > 0)

\(=\left(a+b\right)^2-\left(2c\right)^2=\left(a+b\right)^2-4c^2\)

Điều cần c/m tương đương với: \(a^2-b^2=\left(a+b\right)^2-4c^2\) (a,b,c > 0)

\(\Leftrightarrow a^2-b^2=a^2+2ab+b^2-4ac\)

\(\Leftrightarrow a^2-b^2-a^2-2ab-b^2-4ac=0\)

\(\Leftrightarrow-2ab-4ac=0\Leftrightarrow-2\left(ab+2ac\right)=0\)

\(\Leftrightarrow ab+2ac=0\) (vô lí,vì a,b,c > 0 nên \(ab+2ac>0\))

Vậy đề sai.

11 tháng 1 2019

đề đúng :))

A B C M H

áp dụng định lí pytago vào tam giác vuông CMA. ta có:

CA2+AM2=CM2=> AM2=CM2-CA2 =MB2(vì MB=MA) (1)

áp dụng định lí pytago vào tam giác vuông CHM. ta có:

CH2+HM2=CM2=> CM2-CH2=HM2(2)

áp dụng định lí pytago vào tam giác vuông MHB. ta có:

MH2+HB2=MB2 (3)

từ (1), (2), (3)=> CM2-CH2+HB2=CM2-CA2

=> -CH2+HB2=-CA2 => CA2=CH2-HB2(đpcm)

29 tháng 3 2019

Áp dụng định lý Py-ta-go vào tam giác ABH vuông tại H ta được :
AH2 + BH2 = AB2
=> AH2 = AB2 - BH2 ( 1)
Áp dụng định lý Py-ta-go vào tam giác ACH vuông tại H ta được :
AH2 + CH2 = AC2

=> AH2 = AC2 - CH2 ( 2 )
Từ ( 1), (2 )
=> AB2 - BH2 = AC2 - CH2
=> AB2 + CH2 = AC2 + BH ( đpcm )
 

19 tháng 4 2019

BTS là cục cứt chó j , nó đéo xứng làm cục cứt của the coconut tao

con kia là đồ giả mạo 

Mà ông Duy có j hay đâu mà bọn m giả lắm thế