Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Tam giác sao lại có số đo??!!!!
b) Xét \(\Delta AME\)và \(\Delta BMH\)có:
AM = BM (M là trung điểm của AB)
\(\widehat{AME}=\widehat{BMH}\)(2 góc đối đỉnh)
ME = MH (gt)
\(\Rightarrow\Delta AME=\Delta BMH\left(c.g.c\right)\)
R làm sao mà suy ra AH vuông góc vs AE??!!!!
c) Ta có: \(\Delta AME=\Delta BMH\)(theo a)
\(\Rightarrow\widehat{EAM}=\widehat{HBM}\)(2 góc tương ứng)
Mà 2 góc này ở vị trí so le trong
\(\Rightarrow AE//BH\)
hay \(AE//BC\)(1)
Xét \(\Delta ANF\)và \(\Delta CNH\)có:
AN = CN (N là trung điểm của AC)
\(\widehat{ANF}=\widehat{CNH}\)(2 góc đối đỉnh)
NF = NH(gt)
\(\Rightarrow\Delta ANF=\Delta CNH\left(c.g.c\right)\)
\(\Rightarrow\widehat{AFN}=\widehat{CHN}\)(2 góc tương ứng)
Mà 2 góc này ở vị trí so le trong
=> AF // CH
hay AF // BC (2)
Từ (1) và (2) => A,E,F thẳng hàng
![](https://rs.olm.vn/images/avt/0.png?1311)
a)Xét ΔAMD và ΔCMB có :
góc AMB = góc CMD ( đối đỉnh)
AM = NC ( GT)
BM = MD ( GT)
--->ΔAMD = ΔCMB(c.g.c)
b) ta có góc CAD = góc ACB(ΔAMD = ΔCMB)
tạo ra hai góc so le trong bằng nhau
--->AD//BC
c)Xét ΔABC và ΔCDA có :
AC : cạnh chung
AD = BC (ΔAMD = ΔCMB)
góc CAD = góc ACB(ΔAMD = ΔCMB)
--->ΔABC = ΔCDA(c.g.c)
d)ta có AE + ED = AD
AF+ FC = BC
mà EF= BF; AD = BC
--->AE = FC
xét ΔAFC và ΔACE có :
AE = FC (CMT)
AC : cạnh chung
góc CAE = góc ACF (ΔAMD = ΔCMB)
--->ΔAFC = ΔCEA ( c.g.c)
--->góc AEC = góc AFC ( hai góc tương ứng)
--->góc AEC = góc AFC=90'
--->AF vuông góc với BC
a) Xét t/g AMD và t/g CMB có:
AM = CM (gt)
AMD = CMB ( đối đỉnh)
MD = MB (gt)
Do đó, t/g AMD = t/g CMB (c.g.c) (đpcm)
b) t/g AMD = t/g CMB (câu a)
=> ADM = CBM (2 góc tương ứng)
Mà ADM và CBM là 2 góc so le trong nên AD // BC (đpcm)
c) t/g AMD = t/g CMB (câu a)
=> AD = BC (2 cạnh tương ứng)
Xét t/g ABC và t/g CDA có:
BC = AD (gt)
ACB = CAD (so le trong)
AC là cạnh chung
Do đó, t/g ABC = t/g CDA (c.g.c) (đpcm)
d) Có: AD = BC (câu c)
DE = BF (gt)
Suy ra AD - DE = BC - BF
=> AE = CF
Mà AE // CF do AD // BC (câu b)
Nên CE // AF ( vì theo tính chất đoạn chắn AE = CF khi AE // CF và CE // AF)
Lại có: CE _|_ AD (gt) => AF _|_ AD
Mà BC // AD (câu b) => AF _|_ BC (đpcm)
![](https://rs.olm.vn/images/avt/0.png?1311)
tham khảo cái này nhé : https://i.imgur.com/b5nHFq7.jpg
![](https://rs.olm.vn/images/avt/0.png?1311)
a: Xét ΔABC vuông tại A và ΔADE vuông tại A có
AB=AD
AC=AE
Do đó: ΔABC=ΔADE
b: Xét ΔAMD và ΔANB có
AM=AN
MD=NB
AD=AB
Do đó: ΔAMD=ΔANB
a: Xét ΔAME vuông tại M và ΔAMH vuông tại M có
AM chung
ME=MH
=>ΔAME=ΔAMH
b: Xét ΔAHF có
AC vừa là đường cao, vừa là trung tuyến
=>ΔAHF cân tại A
=>AC là phân giác của góc FAH
góc FAE=góc FAH+góc EAH
=2*(góc BAH+góc CAH)
=180 độ
=>F,A,E thẳng hàng
mà AE=AF
nên A là trung điểm của FE