K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 2 2019

-tự vẽ hình

a) Áp dụng định lý pytago vào tam giác vuông ABH, ta có:

BH2+AH2=AB2

=> AH2=AB2-BH2(1)

Áp dụng định lý pytago vào tam giác vuông AHC ta có: 

AH2+HC2=AC2

=> AH2=AC2-HC2(2)

Từ (1) và (2) => AB2-BH2=AC2-HC2 => AB2+HC2=AC2+BH2(chuyển vế đổi dấu)

b) Trên đoạn thẳng AB lấy điểm E => AE<AB, trên đoạn thẳng AC lấy điểm F => AF<AC

Áp dụng định lý pytago vào tam giác vuông EAF ta có: 

AE2+AF2=EF2

Áp dụng định lý pytago vào tam giác vuông ABC ta có: 

AB2+AC2=BC2

Mà AE<AB(cmt) => AE2<AB2, AF<AC(cmt) => AF2<AC2

=>AE2+AF2<AB2+AC2 hay EF2<BC2=> EF<BC

c) nghĩ chưa/ko ra >: 

-bn nào giỏi giải hộ =.=

a: \(AB^2-BH^2=AB^2\)

\(AC^2-CH^2=AH^2\)

Do đó: \(AB^2-BH^2=AC^2-CH^2\)

hay \(AB^2+CH^2=AC^2+BH^2\)

c: AH=4,8cm

BH=3,6cm

CH=6,4cm

a) Áp dụng định lí Pytago vào ΔABH vuông tại H, ta được:

\(AB^2=AH^2+BH^2\)

Áp dụng định lí Pytago vào ΔACH vuông tại H, ta được:

\(AC^2=AH^2+CH^2\)

hay \(CH^2=AC^2-AH^2\)

\(\Leftrightarrow AB^2+CH^2=AH^2+BH^2+AC^2-AH^2\)

\(\Leftrightarrow AB^2+CH^2=AC^2+BH^2\)(đpcm)

7 tháng 2 2019

a,\(AB^2-BH^2=AC^2-CH^2\left(=AH^2\right)\Rightarrow AB^2+CH^2=AC^2+BH^2\)

b, \(\hept{\begin{cases}EF^2=AE^2+AF^2\\BC^2=AB^2+AC^2\\AE< AB,AF< AC\end{cases}}\Rightarrow EF^2< BC^2\Rightarrow EF< BC\)

c, Tính được BC = 10 cm

\(AH.BC=AB.AC\left(=2S_{ABC}\right)\Rightarrow AH.10=6.8\Rightarrow AH=4,8\left(cm\right)\)

Sau đó áp dụnh định lí Pitago vào tam giác AHB và AHC vuông tại H thì tính được:

BH = 3,6 cm và CH = 6,4 cm

25 tháng 3 2021

a)Xét △ABC vuông tại A có

góc ABC+góc ACB=90 độ (Trong tam giac vuông, 2 góc nhọn phụ nhau)

Xét△AB vuông tại H, ta có

góc BAH+gócABC=90 độ

=>góc ACB=góc BAH( vì cùng +góc ABC =90 độ)

Xét tam giác CBK có CB=CK =>tam giác CBK cân tại C.

=> góc K=góc ABC

Ta có: ABC+CBK+C=180 độ

BKA=\(\dfrac{180-gócC}{2}\)(1)

Xét tam giácAHC vuông tạiH

=>HAC=90o-C

Do AD là tai phân giác của BAH =>BAD=DAH=\(\dfrac{BAH}{2}=\dfrac{C}{2}\)

Vì tai AH nằm giữa hai tia AD và AC nên:

DAC=DAH+HAC=\(\dfrac{C}{2}\)+90o-C

        =C+\(\dfrac{C+180^{o^{ }}-2C}{2}\)=\(\dfrac{180^{o^{ }}-C}{2}\)(2)

Từ (1) và (2)=> DAC=BKA mà 2 góc này ở vị trí đồng vị nên KB song song với AD (đpcm)

 

22 tháng 3 2021

undefined

5 tháng 2 2022

phạm duy ơi câu c là 2 cạnh góc vuông đúng ko