K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 11 2018

Hình tự vẽ nha 

a) Vì tam giác ABC cân tại A

=> ABC = ACB (1)

Ta có ABC + ABD = ACB + ACE ( cùng = 1800 ) (2)

Từ (1) và (2) => ABD = ACE

Xét tam giác ABD và tam giác ACE có :

AB = AC ( gt )

ABD = ACE ( cmt )

BD = CE ( gt )

=> tam giác ABD = tam giác ACE ( c-g-c )

=> D = E

Xét tam giác BHD và tam giác CKE có :

DHB = EKC ( = 900 )

BD = CE ( gt )

D = E ( cmt )

=> tam giác BHD = tam giác CKE ( ch - gn )

=> đpcm

b) Vì tam giác ABD = tam giác ACE ( chứng minh câu a )

=> HAB = KAC ( 2 góc tương ứng )

Xét tam giác AHB và tam giác AKC có :

HAB = KAC ( cmt )

AHB = AKC ( = 900 )

AB = AC ( gt )

=> tam giác AHB = tam giác AKC ( ch - gn )

=> đpcm

c) Nối H với K

Xét tam giác ADE cân tại A ( vì AD = AE )

=> \(\widehat{D}=\frac{180^0-\widehat{DAE}}{2}\left(1\right)\)

Xét tam giác AHK cân tại A ( vì AH = AK )

\(\Rightarrow\widehat{AHK}=\frac{180^0-\widehat{DAE}}{2}\left(2\right)\)

Từ (1) và (2) => D = AHK

mà 1 góc này ở vị trí đồng vị

=> HK // DE hay HK // BC ( đpcm ) 

Có j lên đây hỏi nha : Group Toán Học

Bài 5 : Cho \(\Delta ABC\) có AB = AC , lấy M là trung điểm của BC . Trên tia đối của tia BC lấy điểm D , trên tia đối của tia CB lấy điểm E sao cho BD = CE . Chứng minh :b )\(\Delta ABD=\Delta ACE\)     a ) AM vuông góc với BC c )\(\Delta ACD=\Delta ABE\)      d ) AM là tia phân giác của góc DAEBài 6 : Cho tam giác ABC ( AC > AB ) . Tia phân giác của góc BAC cắt BC tại D. Trên cạnh AC lấy E sao cho AE = AB .a ) Chứng minh BD...
Đọc tiếp

Bài 5 : Cho \(\Delta ABC\) có AB = AC , lấy M là trung điểm của BC . Trên tia đối của tia BC lấy điểm D , trên tia đối của tia CB lấy điểm E sao cho BD = CE . Chứng minh :

b )\(\Delta ABD=\Delta ACE\)     a ) AM vuông góc với BC

 c )\(\Delta ACD=\Delta ABE\)      d ) AM là tia phân giác của góc DAE

Bài 6 : Cho tam giác ABC ( AC > AB ) . Tia phân giác của góc BAC cắt BC tại D. Trên cạnh AC lấy E sao cho AE = AB .
a ) Chứng minh BD = DE

b ) Kéo dài AB và DE cắt nhau tại K. Chứng minh góc AKD bằng góc ACD .

c ) Chứng minh \(\Delta KBE=\Delta CEB\)

d ) Tìm điều kiện của tam giác ABC để DE vuông góc với AC .

Bài 7 Cho tam giác ABC , P là trung điểm của AB . Đường thẳng qua P và song song với BC cắt AC ở đường thẳng qua Q và song song với AB cắt BC ở F. Chứng minh rằng :

a ) AP = QF

b ) \(\Delta APQ=\Delta QFC\)

c ) Q là trung điểm của AC

d ) Lấy điểm I thuộc tia đối của tia QP sao cho QI = QP . Chứng minh CI // AB

Bài 8 : Cho đoạn thẳng AB . Trên hai nửa mặt phẳng đối nhau bờ AB , kẻ tia Ax và By cùng vuông góc với AB . Trên tia Ax , By lần lượt lấy hai điểm C , D sao cho AC = BD .
a ) Chứng minh AD = BC

. b ) Chứng minh AD // BC .

c ) Gọi 0 là trung điểm của AB . Trên BC lấy điểm E , trên AD lấy điểm F sao cho CE = DF . Chứng minh ( là trung điểm của EF .

 

Mình đang cần gấp ạ

 

0
19 tháng 5 2017

A B C D E H K

a) Vì \(\Delta ABC\) cân tại A

=> \(\widehat{B}=\widehat{C}\)

\(\widehat{ABD}+\widehat{ABC}=180^0\) (kề bù)

\(\widehat{ACB}+\widehat{ACE}=180^0\) (kề bù)

Do đó: \(\widehat{ABD}=\widehat{ACE}\)

Xét \(\Delta ABC\)\(\Delta ACE\) có:

AB = AC (gt)

\(\widehat{ABD}=\widehat{ACE}\) (cmt)

DB = CE (gt)

Do đó: \(\Delta ABD=\Delta ACE\left(c-g-c\right)\)

=> \(\widehat{D}=\widehat{E}\) ( hai góc tương ứng)

Xét \(\Delta DBH\)\(\Delta ECK\) có:

\(\widehat{DHB}=\widehat{CKE}\) ( = 900)

DB = CE (gt)

\(\widehat{D}=\widehat{E}\)(cmt)

Do đó: \(\Delta DBH=\Delta ECK\) (ch -gn)

=> BH = CK (hai cạnh tương ứng)

b) Xét \(\Delta ABH\)\(\Delta ACK\) có:

CK = BH ( cmt )

\(\widehat{AHB}=\widehat{AKC}\left(=90^0\right)\)

AB = AC (gt)

Do đó: \(\Delta ABH=\Delta ACK\) ( cạnh huyền - cạnh góc vuông)

6 tháng 2 2018

a) Vì ∆ABC cân tại A nên góc ABC =góc ACB (tính chất tam giác cân)

Ta có: góc ABC + góc ABD=180o (hai góc kề bù)

góc ACB + góc ACE=180o (hai góc kề bù)

Suy ra: góc ABD = góc ACE

Xét ∆ABD và ∆ACE, ta có:

AB = AC (gt)

góc ABD = góc ACE (chứng minh trên)

BD = CE (gt)

Suy ra: ∆ABD = ∆ACE (c.g.c)

⇒ góc D = góc E (hai góc tương ứng)

Xét hai tam giác vuông BHD và CKE, ta có:

góc BHD =góc CKE=90o

BD = CE (gt)

góc D = gócE (chứng minh trên)

Suy ra: ∆BHD = ∆CKE (cạnh huyền, góc nhọn)

Suy ra: BH = CK (hai cạnh tương ứng)

Xét tam giác vuông AHB và ACK, ta có:

góc AHB = gócAKC = 90o

AB = AC (gt)

BH = CK (chứng minh trên)

Suy ra: ∆ABH = ∆ACK (cạnh huyền, cạnh góc vuông)



Bài 1:Cho góc nhọn xOy.Trên tia Ox lấy điểm A,trên tia Oy lấy điểm B sao cho OA=OB.Trên tia Ax lấy điểm C,trên tia By lấy điểm D sao cho AC=BDa) Chứng minh:AD=BCb) Gọi E là giao điểm AD và Bc.Chứng minh:\(\Delta EAC=\Delta EBD\)c) Chứng minh:OE là phân giác của góc xOyBài 2:Cho \(\Delta ABC\)có \(\widehat{A}=90^o\).Kẻ AH vuông góc với BC \(\left(H\varepsilon BC\right)\).Trên đường thẳng vuông góc với BC tại B lấy điểm D...
Đọc tiếp

Bài 1:

Cho góc nhọn xOy.Trên tia Ox lấy điểm A,trên tia Oy lấy điểm B sao cho OA=OB.Trên tia Ax lấy điểm C,trên tia By lấy điểm D sao cho AC=BD

a) Chứng minh:AD=BC

b) Gọi E là giao điểm AD và Bc.Chứng minh:\(\Delta EAC=\Delta EBD\)

c) Chứng minh:OE là phân giác của góc xOy

Bài 2:

Cho \(\Delta ABC\)có \(\widehat{A}=90^o\).Kẻ AH vuông góc với BC \(\left(H\varepsilon BC\right)\).Trên đường thẳng vuông góc với BC tại B lấy điểm D không cùng nửa mặt phẳng bờ BC với điểm A sao  cho BD=AH

Chứng minh rằng:

a) \(\Delta AHB=\Delta DBH\)

b) AB//DH

c) Tính \(\widehat{ACB}\),biết \(\widehat{BAH=35^o}\)

Bài 3:

Cho \(\overline{\Delta}ABC\) vuông tại A có \(\overline{\Delta}B=30^o\)

a) Tính \(\Delta C\)

b) Vẽ tia phân giác của góc C cắt cạnh AB tại D

c) Trên cạnh CB lấy điểm M sao cho CM=CA.Chứng minh \(\Delta ACD=\Delta MCD\)

d) Qua C vẽ đường thẳng xy vuông góc CA.Từ A kẻ đường thẳng song song với CD cắt xy ở K.Chứng minh:AK=CD

e) Tính \(\DeltaẠKC\)

Bài 4:

Cho tam giác ABC vuông tại A,có AB=AC.Gọi K là trung điểm của cạnh BC

a) Chứng minh \(\Delta AKB=\Delta AKC\)và \(AK⊥BC\)

b) Từ C kẻ đường vuông góc với BC,nó cắt AB tại E.Chứng minh EC//AK

c) Chứng minh CE=CB

0
Câu 1. Cho tam giác ABC vuông tại A (AB<AC). Tia phân giác góc A cắt BC tại D. Trên cạnh AC lấy điểm M sao cho AM=ABa) Chứng minh: DB=DMb) Gọi E là giao điểm AB và MD. Chứng minh \(\Delta BED=\Delta MCD\)c) Gọi H là trung điểm của EC. Chứng minh ba điểm A,D,H thẳng hàngCâu 2 . Cho \(\Delta ABC\)có AB<AC. Tia phân giác góc ABC cắt AC tại D. Trên cạnh BC lấy điểm E sao cho BA=BEa) Chứng minh: DA=DEb) Tia ED cắt BA tại F....
Đọc tiếp

Câu 1. Cho tam giác ABC vuông tại A (AB<AC). Tia phân giác góc A cắt BC tại D. Trên cạnh AC lấy điểm M sao cho AM=AB

a) Chứng minh: DB=DM

b) Gọi E là giao điểm AB và MD. Chứng minh \(\Delta BED=\Delta MCD\)

c) Gọi H là trung điểm của EC. Chứng minh ba điểm A,D,H thẳng hàng

Câu 2 . Cho \(\Delta ABC\)có AB<AC. Tia phân giác góc ABC cắt AC tại D. Trên cạnh BC lấy điểm E sao cho BA=BE

a) Chứng minh: DA=DE

b) Tia ED cắt BA tại F. Chứng minh \(\Delta DAF=\Delta DEC\)

c) Gọi H là trung diểm của FC. Chứng minh ba điểm B,D,H thẳng hàng

Câu 3. Cho \(\Delta ABC\)cân tại A. Kẻ AH vuông góc với BC (\(H\in BC\))

a) Chứng minh: HB=HC

b) Kẻ \(HD\perp AB\left(D\in AB\right)\)và \(HE\perp AC\left(E\in AC\right)\). Chứng minh \(\Delta HDE\)cân

Câu 4. Cho tam giác ABC vuông tại B, đường phân giác \(AD\left(D\in BC\right)\). Kẻ DE vuông góc với \(AC\left(E\in AC\right)\)

a) Chứng minh: \(\Delta ABD=\Delta AED;\)

b) BE là đường trung trực của đoạn thẳng AD

c) Gọi F là giao điểm của hai đường thẳng AB và ED  Chứng minh BF=EC

3
4 tháng 5 2019

Câu a

Xét tam giác ABD và AMD có

AB = AM từ gt

Góc BAD = MAD vì AD phân giác BAM

AD chung

=> 2 tam guacs bằng nhau

4 tháng 5 2019

Câu b

Ta có: Góc EMD bằng CMD vì góc ABD bằng AMD

Bd = bm vì 2 tam giác ở câu a bằng nhau

Góc BDE bằng MDC đối đỉnh

=> 2 tam giác bằng nhau