Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABC vuông tại A và ΔADE vuông tại A có
AB=AD
AC=AE
Do đó: ΔABC=ΔADE
b: Xét ΔAMD và ΔANB có
AM=AN
MD=NB
AD=AB
Do đó: ΔAMD=ΔANB
a: Xét ΔABC vuông tại A và ΔADE vuông tại A có
AB=AD
AC=AE
Do đó: ΔABC=ΔADE
a: Xét ΔABC vuông tại A và ΔADE vuông tại A có
AB=AD
AC=AE
Do đó: ΔABC=ΔADE
b: AM=ED/2
AN=BC/2
mà ED=BC
nên AM=AN
a: Xét ΔABN vuông tại A và ΔACM vuông tại A có
AB=AC
góc ABN=góc ACM
=>ΔABN=ΔACM
b: ΔABN vuông tại A có AE là trung tuyến
nên AE=BE=NE=BN/2
ΔACM vuông tại A có AD là trung tuyến
nên AD=CM/2=BN/2=AE
góc EAB=góc EBA=15 độ
góc DAC=góc DCA=15 độ
=>góc EAD=90-15-15=60 độ
Xét ΔAED có AE=AD và góc EAD=60 độ
nên ΔAED đều
c: Xét ΔIBC có góc IBC=góc ICB
nên ΔIBC cân tại I
=>IB=IC
=>I nằm trên trung trực của BC
=>A,I,H thẳng hàng
a/ Ta có AN vuông góc AC; HM vuông góc AC => AN//HM (1)
Ta có AM vuông góc AB; HN vuông góc AB => AM//HN (2)
=> Tứ giác AMHN là hình bình hành (Tứ giác có các cặp cạnh đối // với nhau từng đôi một là hbh)
AH; MN là hai đường chéo của hbh nên chúng cắt nhau tại trung điểm mỗi đường
b/ Trước hết ta phải c/m A, I, K thẳng hàng
Nối AI; AK
+ Xét tam giác AHK có
Hình bình hành AMHN có ^MAN=90 => ^ANM =90 => AN vuông góc HK nà NK=NH
=> tam giác AKH cân tại A (Tam giác có đường cao đồng thời là đường trung tuyến là tam giác cân)
=> ^KAN=^HAN (1) (trong tam giác cân đường cao đồng thời là đường phân giác)
+ Xét tam giác AIH chứng minh tương tự ta cũng có
^HAM=^IAM (2)
+ Mà ^HAN+^HAM=^BAC=90 (3)
Từ (1) (2) (3) => ^KAN+^IAM=^HAN+^HAM=90
=> ^KAN+^HAN+HAM+^IAM=180 => A,I,K thẳng hàng
+ Ở trên ta đã chứng minh được tam giác AKH và tam giác AIH là tam giác cân tại A
=> AK=AH=AI => A là trung điểm của IK
+ Xét tam giác
a) Xét tứ giác AEMF có
\(\widehat{EAF}=90^0\)(gt)
\(\widehat{AEM}=90^0\)(gt)
\(\widehat{AFM}=90^0\)(gt)
Do đó: AEMF là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)
b) Xét ΔABC có
M là trung điểm của BC(gt)
MF//AB(cùng vuông góc với AC)
Do đó: F là trung điểm của AC(Định lí 1 về đường trung bình của tam giác)
Xét ΔABC có
M là trung điểm của BC(gt)
F là trung điểm của AC(cmt)
Do đó: MF là đường trung bình của ΔABC(Định nghĩa đường trung bình của tam giác)
Suy ra: \(MF=\dfrac{AB}{2}\)(Định lí 2 về đường trung bình của tam giác)
mà AE=MF(AFME là hình chữ nhật)
nên \(AE=\dfrac{AB}{2}\)
mà A,E,B thẳng hàng(gt)
nên E là trung điểm của AB
Ta có: F là trung điểm của NM(gt)
nên \(MN=2\cdot MF\)(1)
Ta có: E là trung điểm của AB(cmt)
nên AB=2AE(2)
Ta có: AEMF là hình chữ nhật(cmt)
nên MF=AE(Hai cạnh đối)(3)
Từ (1), (2) và (3) suy ra MN=AB
Xét tứ giác ABMN có
MN//AB(cùng vuông góc với AC)
MN=AB(cmt)
Do đó: ABMN là hình bình hành(Dấu hiệu nhận biết hình bình hành)
help với nha
Xét tứ giác AEBM có
Hai đường chéo AB và EM cắt nhau tại trung điểm của mỗi đường và vuông góc với nhau
nên AEBM là hình thoi