Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
hình vẽ đấy nhé
GIAI
a ) xét tam giác AMB và tam giác CMN có
AM = MC ( M là trung điểm của AC )
góc AMB = goc CMN ( đối đỉnh )
MB = MN ( M là trung điểm của BN )
=> tam giác AMB = tam giác CMN ( c.g.c)
=> AB = CN ( 2 cạnh tương ứng )
=> góc BAM = NCM = 90 độ ( 2 góc tương ứng )
=> CN vuông góc với AC (dpcm )
b ) chúng minh tương tự
=> tam giác ANM = tam giác CBM ( c.g.c )
=> AN = BC ( 2 cạnh tương ứng )
=> góc ANM = góc CBM ( 2 góc tương ứng )
mà 2 góc ở vị trí so le trong của 2 đường thẳng AN và BC
=> AN song song BC ( dpcm)
a: Xét ΔAMB và ΔANC có
AB=AC
góc B=góc C
BM=CN
=>ΔAMB=ΔANC
b: Xét ΔAEM vuông tại E và ΔAFN vuông tại F có
AM=AN
góc EAM=góc FAN
=>ΔAEM=ΔAFN
=>AE=AF
c: Xét ΔABC có AE/AB=AF/AC
nên EF//BC
1 )
Xét \(\Delta AMB\)và \(\Delta CMN\)có :
BM = NM ( gt )
\(\widehat{AMB}=\widehat{CMN}\) ( đối đỉnh )
CM = AM ( gt)
=> \(\Delta AMB=\Delta CMN\left(c.g.c\right)\)
=> CN = AB
và \(\widehat{MCN}=90^o\) ( hay \(\widehat{ACN}=90^o\) )
=> \(CN\perp AC\)
2 ) Dễ cm \(\Delta AMN=\Delta CMB\left(c.g.c\right)\)
=> AN = BC
và \(\widehat{BCM}=\widehat{MAN}\) mà 2 góc này ở vị trí so le trong => BC//AN
3)
Dễ cm \(\Delta BAN=\Delta NCB\left(c.c.c\right)\)
4 )
Dễ cm \(\Delta BAC=\Delta NCA\left(c.c.c\right)\)
b/ Xét tam giác AMN và tam giác CMB có:
BM=MN(cmt)
AM=MC(cmt)
Góc AMN= góc CMB( đối đỉnh)
Vậy tam giác AMN = tam giác CMB(c-g-c)
=> AN=BC(hai canh tương ứng)
góc BCM=góc MAN(2 góc tương ứng)
Do góc BCM và góc MAN là cặp góc so le trong bằng nhau nên AN//BC
a: Xét ΔCMN và ΔAMB có
MC=MA
\(\widehat{CMN}=\widehat{AMB}\)
MN=MB
Do đó: ΔCMN=ΔAMB
Suy ra: \(\widehat{MCN}=\widehat{MAB}\) và CN=AB
hay CN\(\perp\)AC