K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 11 2023

loading... a) Do MH ⊥ AB (gt)

⇒ ∠AHM = 90⁰

Do MK ⊥ AC (gt)

⇒ ∠AKM = 90⁰

Tứ giác AHMK có:

∠AHM = ∠HAK = ∠AKM = 90⁰

⇒ AHMK là hình chữ nhật

b) AB = AC (gt)

⇒ ∆ABC vuông cân tại A

AM là đường trung tuyến

⇒ AM cũng là đường phân giác của ∆BAC

⇒ AM là đường phân giác của ∠HAK

Ta có:

AHMK là hình chữ nhật (cmt)

AM là đường phân giác của ∠HAK (cmt)

⇒ AHMK là hình vuông

25 tháng 11 2023

Mọi người ơi giúp mình ik câu b á

a: Xét tứ giác AHMK có 

\(\widehat{AHM}=\widehat{AKM}=\widehat{KAH}=90^0\)

Do đó: AHMK là hình chữ nhật

23 tháng 12 2020

Bn tự vẽ hình nhahiu

a, Xét tứ giác HMKA có

góc MHA= 90 độ( mh ⊥ AB-gt)

góc MKA = 90 độ( MK⊥ AC - gt)

góc HAK = 90 độ( tam giác ABC ⊥ A-gt)

-> HMKA là hình chữ nhật ( tứ giác có 3 góc vuông)

-> HM song song AK; Hk=MA; HA=MK

ta có

HM song song ak(cmt)

M là trung điểm BC(gt)

-> H là trung điểm BA

-> Bh=HA=1/2 BA

mà HA=MK(cmt)

->BH=MK(1)

Xét tam giác ABC vuông tại A có

AM là đg trung tuyến(gt)

-> AM=MB=MC

mà MA=HK(cmt)

-> HK=BM(2)

Từ (1) và (2)

-> BMKH là hình bình hành( các cạnh đối bằng nhau là hình bình hành)

Sorry nhe mình ko bít lm câu C

Nếu hai câu trên đúng like cho mình nha >_<

 

 

 

dạ cô vẽ dùng em hình

a, xét tứ giác AHMK có

góc MHA=90 độ( MH ⊥ Ab-gt)

góc MKA=90 độ( MK⊥ AC-gt)

góc HAK= 90 độ ( tam giác ABC vuông tại A-gt)

-> AHMK là hcn ( tứ giác có 3 góc vuông là hcn)2). Có : MH vuông góc với AB ( gt )

              AC vuông góc với AB ( 
Δ
ABC vuông tại A)

=> MH//AC 

Xét tam giác ABc có

MH//AC( cmt)

M là trung điểm BC (gt)

=> H là trung điểm AB (định lý đường trung bình của tam giác)(đpcm)
. Có: MK vuông góc AC ( gt)

AB vuông góc AC( tam giác ABC vuông tại A )

=> MK//AB

Có:MK//AB(cmt)

M là trung điểm BC ( gt)

=> K là trung điểm AC ( định lý đường trung bình của tam giác )

Có : H là trung điểm AB ( cmt)

=. BH=1/2AB

Xét tam giác ABC có

M là trung điểm BC(cmt)

K là trung điểm AC ( cmt)

=> MK là đưởng trung bình của tam giác ABC( dấu hiệu nhận biết)

=> MK=1/2AB

( tính chất đường trung bình của tam giác)

=> MK//AB(tính chất đường trung bình của tam giác) hay MK//BH

Có MK=1/2AB

BH= 1/2AB

=> MK=BH

Mà MK//BH(cmt)

=> BMKH là hình bình hành

VÌ BMKH là hình bình hành (cmt)

=> Hai đường chéo HM và BK cắt nhau tại trung điểm mỗi đường 

Mà E là trung điểm HM ( gt)

=> E là trung điểm BK hay ba điểm B; E; K thẳng hàng(dpcm)

mình tự làm ne chắc do mạng mình bị lỗi bắm nhầm phải

25 tháng 12 2023

a: Sửa đề: vẽ MH\(\perp\)AB, MK\(\perp\)AC

Xét tứ giác AHMK có

\(\widehat{AHM}=\widehat{AKM}=\widehat{KAH}=90^0\)

=>AHMK là hình chữ nhật

b: Vì ΔABC vuông tại A

nên \(S_{ABC}=\dfrac{1}{2}\cdot AB\cdot AC\)

\(=\dfrac{1}{2}\cdot6\cdot8=\dfrac{1}{2}\cdot48=24\left(cm^2\right)\)

 

18 tháng 10 2023

a) Xét tứ giác ANMK có:

\(\left\{{}\begin{matrix}\widehat{A}=90^o\\\widehat{N}=90^o\\\widehat{K}=90^o\end{matrix}\right.\)

=> ANMK là hình chữ nhật

b) Ta có:

\(\widehat{MCA}=\widehat{MAC}=\widehat{NAK}\) mà 2 góc có vị trí đồng vị

=> NK//MC

Mặt khác: MN//KC

=> NMCK là hình bình hành

Ta có: O là trung điểm MK

=> O là trung điểm NC

=> ON=OC

c) 

Vì tứ giác ANMK là hình chữ nhật

=> NM=AK

  tứ giác NMCK là hình bình hành

=> NM=KC

=> \(MN=\dfrac{1}{2}AC\)

\(\Rightarrow EM=AC\)

mà EM//AC

=> AEMC là hình bình hành

Gọi I là trung điểm AM

=> I là trung điểm EC

Vì ANMK là h.c.n

=> I là trung điểm NK

=> AM, NK, EC đồng quy tại I

30 tháng 10 2021

Tham khảo nha!