Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a ) Ta có : \(\widehat{A}=\widehat{D}=\widehat{E}=90^o\left(gt\right)\)
\(\Rightarrow ADME\) là hình chữ nhật ( tứ giác có ba góc vuông )
b ) Ta có : ME là đường trung bình của tam giác ABC
\(\Rightarrow ME//AB\) và \(ME=\frac{1}{2}AB=\frac{1}{2}.6=3\left(cm\right)\)
\(\Rightarrow AD=ME=3\left(cm\right)\)( cạnh đối hình chữ nhật )
Lại có : \(\hept{\begin{cases}ME//AB\left(cmt\right)\\MB=MC\left(gt\right)\end{cases}}\)
\(\Rightarrow AE=CE=\frac{AC}{2}=\frac{8}{2}=4\left(cm\right)\)
ADME : hình chữ nhật
\(\Rightarrow A_{ADME}=AD.AE=3.4=12\left(cm^2\right)\)
c ) Dễ thấy AC là đường trung trực của MK
\(\Rightarrow AM=AK\)và \(CM=CK\)
Mà AM = CM \(\left(=\frac{1}{2}BC\right)\) ( \(\Delta ABC\) vuông tại A )
\(\Rightarrow AM=AK=CM=CK\)
\(\Rightarrow AMCK\)là hình thoi ( tứ giác có 4 cạnh bằng nhau )
d ) Ta có : \(ME=\frac{1}{2}AB\)
\(\Rightarrow AB=2ME=MK\)
Hình thoi AMCK là hình vuông \(\Leftrightarrow AC=MK\)
\(\Leftrightarrow AC=AB\) ( vì AB = MK )
\(\Leftrightarrow\Delta ABC\)cân tại A
Mà \(\Delta ABC\) vuông tại A (gt)
Vậy \(\Delta ABC\)vuông cân tại A thì hình thoi AMCK là hình vuông
Câu b: Xet tg vuông AEH và tg vuông ABC có
^BAH = ^ACB (cùng phụ với ^ABC)
=> Tg AEH đồng dạng với tg ABC \(\Rightarrow\frac{AE}{AC}=\frac{EH}{AB}\) mà EH=AF (cạnh đối HCN)
\(\Rightarrow\frac{AE}{AC}=\frac{AF}{AB}\Rightarrow AE.AB=AF.AC\)
Câu c:
Ta có AM=BC/2==BM=CM (trong tg vuông trung tuyến thuộc cạnh huyền bằng nửa cạnh huyền)
=> tg AMC cân tại M => ^MAC = ^ACB mà ^BAH = ^ACB (cmt) => ^MAC = ^BAH (1)
Ta có ^AHE = ^ABC (cùng phụ với ^BAH) mà ^AHE = ^HAC (góc so le trong) => ^ABC = ^HAC (2)
Gọi giao của AH với EF là O xét tg AOF có
AH=EF (hai đường chéo HCN = nhau)
O là trung điểm của AH vào EF
=> OA=OF => tg AOF cân tại O => ^HAC = ^AFE (3)
Từ (2) và (3) => ^AFE = ^ABC (4)
Mà ^ABC + ^ACB = 90 (5)
Từ (1) (4) (5) => ^MAC + ^AFE = 90
Xét tg AKF có ^AKF = 180 - (^MAC + ^AFE) = 180-90=90 => AM vuông góc EF tại K
a: Ta có: H và M đối xứng nhau qua AB
nên AB là đường trung trực của HM
Suy ra: AB\(\perp\)HM và E là trung điểm của HM
Ta có: H và N đối xứng nhau qua AC
nên AC là đường trung trực của HN
Suy ra: AC\(\perp\)HN tại F và F là trung điểm của NH
Xét tứ giác AEHF có
\(\widehat{FAE}=\widehat{AEH}=\widehat{AFH}=90^0\)
Do đó: AEHF là hình chữ nhật
a: Xét tứ giác AEMF có
\(\widehat{AEM}=\widehat{AFM}=\widehat{FAE}=90^0\)
=>AEMF là hình chữ nhật
b: Ta có: AEMFlà hình chữ nhật
=>AM cắt EF tại trung điểm của mỗi đường và AM=EF
=>O là trung điểm chung của AM và EF
K đối xứng M qua AC
=>AC vuông góc MK tại trung điểm của MK
ta có: AC\(\perp\)MK
AC\(\perp\)MF
MK,MF có điểm chung là M
Do đó: M,K,F thẳng hàng
=>F là trung điểm của MK
Xét ΔABC có MF//AB
nên \(\dfrac{MF}{AB}=\dfrac{CM}{CB}=\dfrac{1}{2}\)
mà \(\dfrac{MF}{MK}=\dfrac{1}{2}\)(F là trung điểm của MK)
nên \(MK=AB\)
Xét tứ giác ABMK có
AB//MK
AB=MK
Do đó: ABMK là hình bình hành
=>AM cắt BK tại trung điểm của mỗi đường
mà O là trung điểm của AM
nên O là trung điểm của BK
=>B,O,K thẳng hàng
c: Xét ΔABC có
M là trung điểm của BC
MF//AB
Do đó: F là trung điểm của AC
Xét tứ giác AMCK có
F là trung điểm chung của AC và MK
=>AMCK là hình bình hành
Hình bình hành AMCK có AC\(\perp\)MK
nên AMCK là hình thoi
=>AK//CM và CA là phân giác của góc KCM
=>AK//CB
Xét tứ giác ABCK có AK//BC
nên ABCK là hình thang
Để ABCK là hình thang cân thì \(\widehat{KCM}=\widehat{ABC}\)
=>\(\widehat{ABC}=2\cdot\widehat{ACB}\)
mà \(\widehat{ABC}+\widehat{ACB}=90^0\)
nên \(\widehat{ABC}=\dfrac{2}{3}\cdot90^0=60^0;\widehat{ACB}=90^0-60^0=30^0\)
Ta có: ΔABC vuông tại A
mà AM là đường trung tuyến
nên BC=2AM=10(cm)
Xét ΔABC vuông tại A có \(sinB=\dfrac{AC}{BC}\)
=>\(AC=10\cdot sin60=5\sqrt{3}\left(cm\right)\)
\(S_{ABC}=\dfrac{1}{2}\cdot CA\cdot CB\cdot sinACB\)
\(=\dfrac{1}{2}\cdot5\sqrt{3}\cdot10\cdot sin30=5\cdot5\sqrt{3}\cdot\dfrac{1}{2}=\dfrac{25\sqrt{3}}{2}\left(cm^2\right)\)