Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b1 :
A B C I
tự cm tam giác ABC vuông
=> góc ABC + góc ACB = 90 (đl)
BI là pg của góc ABC => góc IBC = góc ABC : 2
CI là pg của góc ACB => góc ICB = góc ACB : 2
=> góc IBC + góc ICB = (góc ABC + góc ACB) : 2
=> góc IBC + góc ICB = 45
xét tam giác IBC => góc IBC + góc ICB + góc BIC = 180
=> góc BIC = 135
a) Xét tam giác AMB và tam giác CME có :
BM=ME (gt)
Góc AMB = góc CME ( đối đỉnh )
AM = MC ( gt )
-> vậy tam giác AMB = tam giác CME (c.g.c)
b)
a/(c.g.c)
b/ CE=AB ( cặp cạnh tương ứng)
Mà: AB<BC( cạnh huyền lớn nhất)
Nên CE<BC
c/góc ABM=góc CEM(cặp góc tương ứng) (1)
Xét tam giác BCE có: CE<BC( CMT)
Suy ra góc CEM<góc MBC (2) ( Quan hệ giữa góc và cạnh đối diện trong 1 tam giác)
Vậy: từ (1) và (2), ta có: góc ABM< góc MBC
d/góc ABM=góc CEM, lại ở vị trí SLT nên AE//BC
A B C D E H M
a/ Xét 2 tam giác EMC và tam giác AMB có:
BM=MC (gt)
AM=ME (gt)
Góc AMB=góc EMC (2 góc đối đỉnh)
=> tam giác EMC = tam giác AMB (Cạnh-góc-cạnh)
=> AB=EC (2 cạnh tương ứng)
b/ Xét tam giác ADE có:
AH=HD (gt)
AM=ME (gt)
=> HM là đường trung bình của tam giác ADE => HM//DE => AD vuông góc DE (1)
và DE/2=HM (Tính chất đường trung bình)
Mà DF=FE=DE/2
=> DF=HM=DE/2 (2)
Từ (1) và (2) => Tứ giác HMFD là hình chữ nhật => MF vuông góc DE
c/ MF//DH (cmt)
=> MF//AD
Câu hỏi của Tuấn Anh Nguyễn - Toán lớp 7 - Học toán với OnlineMath
Em tham khảo nhé!
A B C M N D / / x x
Xét △AMD và △CMB
Có: AM = MC (M là trung điểm)
AMD = CMB (2 góc đối đỉnh)
MD = MB (gt)
=> △AMD = △CMB (c.g.c)
=> AD = BC (2 cạnh tương ứng)
b, Xét △ABM và △CDM
Có: AM = MC (gt)
BMA = CMD (2 góc đối đỉnh)
MB = MD (gt)
=> △ABM = △CDM (c.g.c)
=> BAM = DCM (2 góc tương ứng)
Mà BAM = 90o
=> DCM = 90o
=> AC ⊥ CD
c, Vì BN // AC (gt)
=> BNC = ACD (2 góc đồng vị)
Mà ACD = 90o (câu b)
=> BNC = 90o
Xét tam giác BND vuông tại N có:
NM là đường trung tuyến ứng với cạnh huyền BD => NM = 1/2 . BD = BM
Xét △ABM vuông tại A và △CNM vuông tại C
Có: AM = MC (gt)
BM = MN (cmt)
=> △ABM = △CNM (ch-cgv)
Sửa đề: M là trug điểm của AC
a: Xét tứ giác ABCE có
M là trung điểm chung của AC và BE
nên ABCE là hình bình hành
=>AB=CE
b: ABCE là hình bình hành
nên CE//AB
=>CE vuông góc với AC