Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔMAB và ΔMDC có
MA=MD
\(\widehat{AMB}=\widehat{DMC}\)(hai góc đối đỉnh)
MB=MC
Do đó: ΔMAB=ΔMDC
=>\(\widehat{MAB}=\widehat{MDC}\)
mà hai góc này là hai góc ở vị trí so le trong
nên AB//CD
b: Xét ΔEMB vuông tại E và ΔFMC vuông tại F có
MB=MC
\(\widehat{EMB}=\widehat{FMC}\)(hai góc đối đỉnh)
Do đó: ΔEMB=ΔFMC
=>EM=FM
=>M là trung điểm của EF
#)Giải : (Hình tự vẽ lười lắm òi)
Vì \(AB//CD\Rightarrow\widehat{BAC}+\widehat{ACD}=180^o=90^o+\widehat{ACD}=180^o\Rightarrow\widehat{ACD}=90^o\)
Ta có : \(\widehat{BAC}=\widehat{ACD}\)
\(AB=CD\left(c/m\Delta ABM=\Delta CDM\right)\)
AC là cạnh chung
\(\Rightarrow\Delta ABC=\Delta ACD\left(c.g.c\right)\)
\(\Rightarrow AD=BC\)
Mà \(AM=\frac{1}{2}AD\Rightarrow AM=\frac{1}{2}BC\)
A B C D M
M là trung điểm AD => AM = 1/2 AD (1)
và AM = MD
Xét ∆AMB và ∆AMC có :
AM = MD (cmt)
\(\widehat{AMB}=\widehat{AMC}\)( đối đỉnh)
MB = MC (M là trung điểm BC)
do đó ∆AMB = ∆AMC (c-g-c)
=> AB = AC và \(\widehat{B_1}=\widehat{C_1}\)
Mà \(\widehat{B_1};\widehat{C_1}\)ở vị trí so le trong
=> AB // CD
=> \(\widehat{BAC}+\widehat{ACD}=180^o\)( trong cùng phía)
Mà \(\widehat{BAC}=90^o\Rightarrow\widehat{ACD}=90^o\Rightarrow\widehat{BAC}=\widehat{ACD}\)
Xét ∆ABC và ∆CDA có :
AB = AC (cmt)
\(\widehat{BAC}=\widehat{ACD}\)
AC chung
do đó : ∆ABC = ∆CDA
=> BC = AD (2)
Từ (1),(2) => đpcm
a) Vì ∆ABC cân tại A có AH là đường cao nên AH cũng là đường trung tuyến
Suy ra BH=CH
Xét ∆AHB và ∆AHC có
AH là cạnh chung
BH=CH (cmt)
AB=AC (∆ABC cân tại A)
Do đó ∆AHB=∆AHC
Xét ∆AMH ta có
AD vuông góc với MH (HD vuông góc AB)
Suy ra AD là đường cao của ∆AMH (1)
DH=DM (gt)
Nên AD là đường trung bình của ∆AMH (2)
Từ (1) và (2) suy ra ∆AMH cân tại A
Suy ra AM=AH
a: Xét ΔMAC và ΔMDB có
MA=MD
\(\widehat{AMC}=\widehat{DMB}\)(hai góc đối đỉnh)
MC=MB
Do đó: ΔMAC=ΔMDB
b: Xét ΔMEB và ΔMFC có
ME=MF
\(\widehat{BME}=\widehat{CMF}\)(hai góc đối đỉnh)
MB=MC
Do đó: ΔMEB=ΔMFC
=>\(\widehat{MEB}=\widehat{MFC}\)
=>\(\widehat{MFC}=90^0\)
=>CF\(\perp\)AD
c: Xét tứ giác BFCE có
M là trung điểm chung của BC và FE
=>BFCE là hình bình hành
=>BF//CE và BF=CE
Ta có: BF//CE
B\(\in\)FG
Do đó: BG//CE
Ta có: BF=CE
BF=BG
Do đó: BG=CE
Xét tứ giác BGEC có
BG//EC
BG=EC
Do đó: BGEC là hình bình hành
=>BE cắt GC tại trung điểm của mỗi đường
mà H là trung điểm của BE
nên H là trung điểm của GC
=>G,H,C thẳng hàng
c) Δ ABK = Δ ADK (câu b) => BK = DK (2 cạnh tương ứng)
và ABK = ADK (2 góc tương ứng)
Mà ABK + KBE = 180o (kề bù)
ADK + KDC = 180o (kề bù)
nên KBE = KDC
Xét Δ KBE và Δ KDC có:
BE = CD (gt)
KBE = KDC (cmt)
BK = DK (cmt)
Do đó, Δ KBE = Δ KDC (c.g.c)
=> BKE = DKC (2 góc tương ứng)
Lại có: BKD + DKC = 180o (kề bù)
Do đó, BKE + BKD = 180o
=> EKD = 180o
hay 3 điểm E, K, D thẳng hàng (đpcm)
Câu hỏi là gì b nhỉ =)?