. Cho tam giác ABC vuông tại A. Gọi M là trung điểm của AC, trên tia đối của tia MB lấy đi...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 12 2019

a) Xét 2 \(\Delta\) \(AMD\)\(CMB\) có:

\(AM=CM\) (vì M là trung điểm của \(AC\))

\(\widehat{AMD}=\widehat{CMB}\) (vì 2 góc đối đỉnh)

\(MD=MB\left(gt\right)\)

=> \(\Delta AMD=\Delta CMB\left(c-g-c\right)\)

=> \(AD=BC\) (2 cạnh tương ứng).

b) Xét 2 \(\Delta\) \(BMA\)\(DMC\) có:

\(BM=DM\left(gt\right)\)

\(\widehat{BMA}=\widehat{DMC}\) (vì 2 góc đối đỉnh)

\(MA=MC\) (vì M là trung điểm của \(AC\))

=> \(\Delta BMA=\Delta DMC\left(c-g-c\right)\)

=> \(\widehat{BAM}=\widehat{DCM}\) (2 góc tương ứng).

\(\widehat{BAM}=90^0\left(gt\right)\)

=> \(\widehat{DCM}=90^0.\)

=> \(CD\perp MC\)

Hay \(CD\perp AC.\)

c) Theo câu b) ta có \(\Delta BMA=\Delta DMC.\)

=> \(\widehat{ABM}=\widehat{DCM}\) (2 góc tương ứng).

Mà 2 góc này nằm ở vị trí so le trong.

=> \(AB\) // \(CD\)

Hay \(AB\) // \(CN.\)

Có:

\(BN\) // \(AC\left(gt\right)\)

\(AB\) // \(CN\left(cmt\right)\)

=> \(AB=CN\) (tính chất đoạn chắn).

Xét 2 \(\Delta\) vuông \(ABM\)\(CNM\) có:

\(\widehat{BAM}=\widehat{NCM}=90^0\)

\(AB=CN\left(cmt\right)\)

\(AM=CM\) (như ở trên)

=> \(\Delta ABM=\Delta CNM\) (2 cạnh góc vuông tương ứng bằng nhau) (đpcm).

Chúc bạn học tốt!

a: Xét tứ giác ABCD có 

M là trung điểm của AC

M là trung điểm của BD

Do đó: ABCD là hình bình hành

Suy ra: AD=BC

b: ta có: ABCD là hình bình hành

nên CD//AB

hay CD\(\perp\)AC

c: Xét tứ giác ABNC có 

AB//NC

NB//AC

Do đó: ABNC là hình bình hành

SUy ra: CN=AB

Xét ΔABM vuông tại A và ΔCNM vuông tại C có

AB=CN

AM=CM

Do đó: ΔABM=ΔCNM

1 tháng 3 2020

<Bạn kẻ hình giúp mình nha, mình không biết vào đâu để vẽ hình nữa>

a) Xét △BIC và △DIA có:

IC = IA (I: trung điểm AC) 

^BIC = ^DIA (đối đỉnh) 

IB = ID (gt) 

=> △ICB = △DIA (c.g.c) 

=> BC = AD (2 cạnh tương ứng) 

=> đpcm

b) Xét △AIB và △CID có:

IA = IC (I: trung điểm AC) 

^AIB = ^CID (đối đinh) 

IB = ID (gt)

=> △AIB = △CID (c.g.c) 

=> ^BAI = ^DCI (2 góc tương ứng) 

=> ^DCI = 90o

=> CD \(\perp\)AC (đpcm) 

c) Vì BM // AC, AC \(\perp\) CD

=> BM \(\perp\)MC => ^BMC = 90o

Xét △BAC và △MCB có:

^BAC = ^BMC (= 90o)

BC: chung

^MBC = ^BCA (BM // AC) 

=> △BAC = △MCB (ch-gn) 

=> AB = MC (2 cạnh tương ứng) 

Vì AB = MC (cmt), AB = CD (△AIB = △CID) 

=> CM = CD 

Xét △MCI và △DIC có:

^MCI = ^DCI (= 90o)

IC: chung

CM = CD (cmt) 

=> △MCI = △DIC (2 cave) 

=> ^CIM = ^CID (2 góc tương ứng) 

=> IC là phân giác ^MID (đpcm)

1 tháng 3 2020

A B C D M I1 2 3 4 5

Cái hình mình cân nó bị lỗi ý bn tự sửa lại nha :D

a, Xét \(\Delta IBC\)và \(\Delta IDA\)có:

\(BI=DI\left(gt\right)\)

\(AI=CI\left(I-là-tr.điểm-của-AC\right)\)

\(\widehat{BIC}=\widehat{I2}\left(đ.đỉnh\right)\)

\(\Rightarrow\Delta IBC=\Delta IDA\left(c-g-c\right)\)

\(\Rightarrow AD=BC\left(2c.t.ứ\right)\)

b, Xét \(\Delta ABI\) và \(\Delta CDI\)có:

\(BI=DI\left(gt\right)\)

\(\widehat{I5}=\widehat{I4}\left(đ.đỉnh\right)\)

\(AI=CI\left(......\right)\) 

\(\Rightarrow\Delta ABI=\Delta CDI\left(c-g-c\right)\)

\(\Rightarrow\widehat{BAI}=\widehat{DCI}=90^0\)

\(\Rightarrow CD\perp AC\)

c, Ta có: \(\hept{\begin{cases}BM//AC\\BA\perp AC\end{cases}}\Rightarrow BM\perp AB\)

Xét tứ giác \(ABMC\) có:

\(\widehat{A}=\widehat{B}=\widehat{M}=90^0\)

\(\Rightarrow ABMC\) là HCN

\(\Rightarrow AB=MC\)

Xét \(\Delta ABI\) và \(\Delta CMI\) vuông tại \(A;C\)có:

\(AB=CM\)

\(AI=CI\)

\(\Rightarrow\Delta ABI=\Delta CMI\left(2cgv\right)\)

\(\Rightarrow\widehat{I5}=\widehat{I3}\)

Mà: \(\widehat{I5}=\widehat{I4}\)

\(\Rightarrow\widehat{I3}=\widehat{I4}\)

\(\RightarrowĐpcm\)

15 tháng 12 2020

Sửa câu b: Từ M kẻ ME

Bg

a/ Xét hai tam giác AMB và AMC có:

AB = AC (gt)

BM = MC (vì M là trung điểm của BC)

AM là cạnh chung

Nên \(\Delta AMB=\Delta AMC\)(c.c.c)

Vậy \(\Delta AMB=\Delta AMC\)

b/ Xét hai tam giác vuông AME và AMF có:

\(\widehat{EAM}=\widehat{FAM}\)(vì \(\Delta AMB=\Delta AMC\))

AM là cạnh chung

Nên \(\Delta AME=\Delta AMF\)(g.c.g)

Do đó AE = AF (hai cạnh tương ứng)

Vậy AE = AF

c và d hơi dài. Đợi một thời gian :((

16 tháng 12 2020

một thời gian là bao lâu vậy bạn ?

25 tháng 11 2022

a: Xét tứ giác ABCD có

M là trug điểm chung của AC và BD

nên ABCD là hình bình hành

=>DC//AB và DC=AB

và AD=BC; AD//BC

b: CD//AB

AB vuông góc với AC

Do đo: CD vuông góc với CA

c:

Xét tứ giác ABNC có

AB//NC

AC//BN

Do đó: ABNC là hìnhbình hành

=>CN=AB

Xét ΔABM vuông tại A và ΔCNM vuông tại C có

AB=CN

AM=CM

Do đó;ΔABM=ΔCNM