K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 1 2019

A B C M H

Xét tam giác ABC vuông tại A.

Theo định lí Pytago,ta có:\(AB^2+AC^2=BC^2\)

\(\Rightarrow AC^2=BC^2-AB^2=\left(CH+BH\right)^2-\left(AM+BM\right)^2\)

Gọi độ dài CH là a; BH là b. Đặt AM = BM = c (a,b,c > 0)

\(=\left(a+b\right)^2-\left(2c\right)^2=\left(a+b\right)^2-4c^2\)

Điều cần c/m tương đương với: \(a^2-b^2=\left(a+b\right)^2-4c^2\) (a,b,c > 0)

\(\Leftrightarrow a^2-b^2=a^2+2ab+b^2-4ac\)

\(\Leftrightarrow a^2-b^2-a^2-2ab-b^2-4ac=0\)

\(\Leftrightarrow-2ab-4ac=0\Leftrightarrow-2\left(ab+2ac\right)=0\)

\(\Leftrightarrow ab+2ac=0\) (vô lí,vì a,b,c > 0 nên \(ab+2ac>0\))

Vậy đề sai.

11 tháng 1 2019

đề đúng :))

A B C M H

áp dụng định lí pytago vào tam giác vuông CMA. ta có:

CA2+AM2=CM2=> AM2=CM2-CA2 =MB2(vì MB=MA) (1)

áp dụng định lí pytago vào tam giác vuông CHM. ta có:

CH2+HM2=CM2=> CM2-CH2=HM2(2)

áp dụng định lí pytago vào tam giác vuông MHB. ta có:

MH2+HB2=MB2 (3)

từ (1), (2), (3)=> CM2-CH2+HB2=CM2-CA2

=> -CH2+HB2=-CA2 => CA2=CH2-HB2(đpcm)

29 tháng 2 2020

A K M I C H B N

a)

Ta có nối K với M 

=> Xét t/gMCK và t/gMHC ta có:

CK=CH (gt) hay ^KCM=^MCH (gt)

MC (cạnh chung)

=>t/gMCK = t/gMCH (c.g.c)

=>MK=MH ( tương ứng)

đpcm.

b) Tiếp tục nối K và H

Gọi I là giao điểm của CM và KH

Xét t/gICK và t/gICH ta có:

CK=CH (gt) hay ^HCM=^CMK  (gt)

CI (cạnh chung)

=>t/gICK=t/gICH (c.g.c)

=>^CIK=^CIH( tương ứng)

Mà ^CIK+^CIH=180o( góc kề bù)

=>^CIK=^CIH=90o

=>CI_|_HK 

=>CM_|_HK

đpcm.

c) Quan sát hình ta thấy ^CMH=65o=^CMN=65o (1)

Vì ^KCM+^MCN=90o

=>^MCN=90o-^KCM

=>^MCN=90o-35o

=>^MCN=65o(2)

Từ (1) và (2) vì ^NMC=^NCM => t/gNMC là t/g cân.

đpcm.

29 tháng 2 2020

Phạm Mai Oannh , tại sao góc CMH = góc CMN =65 độ vậy bn

Câu 4. Cho tam giác ABC có AB = 9cm, AC = 12cm, BC = 15cm, gọi M là trung điểm của BC. Trên tia đối của tia MA lấy điểm D sao cho MD = MA. a) Chứng minh tam giác ABC vuông tại A. b) CM: \(\Delta MAB\) = \(\Delta MDC\). c) Gọi K là trung điểm của AC chứng minh KD = KB. d) KD cắt BC tịa I, KB cắt AD tại N chứng minh \(\Delta KNI\) cân. Câu 5. Cho tam giác ABC vuông ở A , có C = 300 . Gọi M là trung điểm của BC, trên tia đối...
Đọc tiếp

Câu 4. Cho tam giác ABC có AB = 9cm, AC = 12cm, BC = 15cm, gọi M là trung điểm của BC. Trên tia đối của tia MA lấy điểm D sao cho MD = MA. a) Chứng minh tam giác ABC vuông tại A. b) CM: \(\Delta MAB\) = \(\Delta MDC\). c) Gọi K là trung điểm của AC chứng minh KD = KB. d) KD cắt BC tịa I, KB cắt AD tại N chứng minh \(\Delta KNI\) cân.

Câu 5. Cho tam giác ABC vuông ở A , có C = 300 . Gọi M là trung điểm của BC, trên tia đối của tia MA lấy điểm D sao cho MD = MA. a/ Chứng minh : AB = CD. b/ Chứng minh: \(\Delta BAC=\Delta DAC\). c/ Chứng minh : \(\Delta ABM\) là tam giác đều.

Câu 6. Cho tam giác ABC vuông ở B, gọi M là trung điểm của BC . Trên tia đối của tia MA lấy điểm E sao cho ME = MA. Chứng minh: a/ \(\Delta ABM=\Delta ECM\). b/ AC > CE. c/ góc BAM>góc MAC

4
1 tháng 5 2020

(tự vẽ hình )

câu 4:

 a) có AB2 + AC= 225

BC= 225

Pytago đảo => \(\Delta ABC\)vuông tại A

b) Xét \(\Delta MAB\)và \(\Delta MDC\)

MA = MD (gt)

BM = BC ( do M là trung điểm của BC ) 

\(\widehat{AMB}=\widehat{CMD}\)( hai góc đối đỉnh )

=> \(\Delta MAB\)\(\Delta MDC\) (cgc)

c) vì \(\Delta MAB\)\(\Delta MDC\)

=> \(\hept{\begin{cases}AB=DC\\\widehat{MAB}=\widehat{MDC}\end{cases}}\)

=> AB// DC

lại có AB \(\perp\)AC => DC \(\perp\)AC => \(\Delta KCD\)vuông tại C

Xét \(\Delta\) vuông ABK và \(\Delta\)vuông KCD:

AB =CD (cmt)

AK = KC ( do k là trung điểm của AC )

=> \(\Delta\)vuông AKB = \(\Delta\)vuông CKD (cc)

=> KB = KD

d. do KB = KD => \(\Delta KBD\)cân tại K

=> \(\widehat{KBD}=\widehat{KDB}\)(1)

có \(\Delta ADC\)vuông tại C => \(AD=\sqrt{AC^2+DC^2}=15\)

=> MD = 7.5

mà MB = 7.5

=> MB = MD 

=> \(\Delta MBD\)cân tại M

=> \(\widehat{MBD}=\widehat{MDB}\)(2)

Từ (1) và (2) => \(\widehat{KBD}-\widehat{MBD}=\widehat{KDB}-\widehat{MDB}\)hay \(\widehat{KBM}=\widehat{KDM}\)

Xét \(\Delta KBI\)và \(\Delta KDN\)có:

\(\widehat{KBI}=\widehat{KDN}\)(cmt)

\(\widehat{KBD}\)chung

KD =KB (cmt) 

=> \(\Delta KBI\)\(\Delta KDN\)(gcg)

=> KN =KI 

=. đpcm

1 tháng 5 2020

câu 5: 

a) Xét \(\Delta ABM\)và \(\Delta MDC\):

MA=MD(gt)

MB=MC (M là trung điểm của BC)

\(\widehat{BMA}=\widehat{DMC}\)( đối đỉnh )

=> \(\Delta BMA=\Delta CMD\)(cgc)

b) Xét \(\Delta\)vuông ABC 

có AM là đường trung tuyến của tam giác 

=> \(AM=\frac{1}{2}BC\)mà \(BM=MC=\frac{1}{2}BC\)(do M là trung điểm của BC )

=> AM = BM = MC 

có MA =MD => AM = MD =MB =MC

=> BM +MC = AM +MD hay BC =AD

Xét \(\Delta BAC\)và \(\Delta DCA\)

AB =DC

AC chung

BC =DC

=> \(\Delta BAC\)\(\Delta DCA\)(ccc)

c. Xét \(\Delta ABM\)

BM=AM

\(\widehat{ABM}\)= 600

=> đpcm

1,Cho tam giác ABC cân tại A . Kẻ AM vuông góc với BC tại Ma, Chứng minh tam giác ABM = tam giác ACM b, Biết AB = 20cm ; BC =  24cm . Tính MB và AMc, Kẻ MH vuông góc với AB tại H ; MK vuông góc với AC tại K Chứng minh tam giac AHK cân tại A . Tính MH2,Cho tam giác ABC vuông tại A  có AB = 3cm ; AC = 4cm . Gọi AM là đường trung tuyến của tam giác ABC , trên tia đối của tia MA lấy điểm D sao cho AM = MDa, Tính BCb,Chứng...
Đọc tiếp

1,Cho tam giác ABC cân tại A . Kẻ AM vuông góc với BC tại M

a, Chứng minh tam giác ABM = tam giác ACM 

b, Biết AB = 20cm ; BC =  24cm . Tính MB và AM

c, Kẻ MH vuông góc với AB tại H ; MK vuông góc với AC tại K 

Chứng minh tam giac AHK cân tại A . Tính MH

2,Cho tam giác ABC vuông tại A  có AB = 3cm ; AC = 4cm . Gọi AM là đường trung tuyến của tam giác ABC , trên tia đối của tia MA lấy điểm D sao cho AM = MD

a, Tính BC

b,Chứng minh AB = CD ; AB song song với CD

c,Chứng minh góc BAM > góc CAM 

d, Gọi H là trung điểm của BM , trên đường thẳng AH lấy E sao cho AH = HE , CE cắt AD tại F . Chứng minh F là trung điểm của CE

3, Chứng minh tổng sau không phải là số nguyên :

\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{44^2}+\frac{1}{45^2}\)

4, Tìm x;y biết : \(\frac{x}{y}=\frac{-3}{8}\)và \(x^2-y^2=\frac{-44}{5}\)

 

0
26 tháng 3 2020

A) XÉT \(\Delta AEN\)\(\Delta AFN\)

\(\widehat{BAM}=\widehat{CAM}\)HAY\(\widehat{EAN}=\widehat{FAN}\)

AN LÀ CẠNH CHUNG 

\(\widehat{ANE}=\widehat{ANF}=90^o\)

=>\(\Delta AEN\)=\(\Delta AFN\)(g-c-g)

=> AE = AF ( HAI CẠNH TƯƠNG ỨNG )

B) 

Xét 2 \(\Delta\) BME và CMF

BM=CM

^ BME=^ CMF(ĐĐ)

^EBM= ^ ACB( Góc ngoài tam giác tại B)

=> \(\Delta\) BME= \(\Delta\)CMF(G.C.G)

=> BE=CF( 2 cạnh tương ứng)

C)\(AE=AF\)

\(\Rightarrow2AE=AE+AF\)

\(=AE+AC+CF\)

\(=AE+AC+BE\)

\(=AB+AC\Rightarrow AE=\frac{AB+AC}{2}\left(ĐPCM\right)\)

26 tháng 3 2020

HÌNH BỊ LỖI GỬI LẠI , NỐI EM . MF

Câu 1:thực hiện tínhC=(1-\(\frac{1}{3}\))(1-\(\frac{1}{6}\))(1-\(\frac{1}{10}\))(1-\(\frac{1}{15}\)).....(1-\(\frac{1}{210}\))Câu 2:tìm xa)   (x-2)(x+3) <0b)   3x+2+4.3x+1+3x-1Câu 3:Cho tỉ lệ thức \(\frac{a}{b}\)=\(\frac{c}{d}\).Chứng minh rằng :\(\frac{ab}{cd}\)=\(\frac{\left(a+b^2\right)}{\left(c+d\right)^2}\)Câu 4: Cho 3 số x<y<z thỏa mãn :x+y+z=51.Biết rằng 3 tổng của 2 trong 3 số đã cho tỉ với 9 ,12 ,13 .Tìm x,y,zCâu 5:  Cho tam giác ABC...
Đọc tiếp

Câu 1:thực hiện tính

C=(1-\(\frac{1}{3}\))(1-\(\frac{1}{6}\))(1-\(\frac{1}{10}\))(1-\(\frac{1}{15}\)).....(1-\(\frac{1}{210}\))

Câu 2:tìm x

a)   (x-2)(x+3) <0

b)   3x+2+4.3x+1+3x-1

Câu 3:Cho tỉ lệ thức \(\frac{a}{b}\)=\(\frac{c}{d}\).Chứng minh rằng :\(\frac{ab}{cd}\)=\(\frac{\left(a+b^2\right)}{\left(c+d\right)^2}\)

Câu 4: Cho 3 số x<y<z thỏa mãn :x+y+z=51.Biết rằng 3 tổng của 2 trong 3 số đã cho tỉ với 9 ,12 ,13 .Tìm x,y,z

Câu 5:  Cho tam giác ABC vuông cân tại A.Gọi D là một điểm bất kì trên cạnh BC (D khác B và C ).Vẽ hai tia Bx;Cy vuông góc với BC và nằm trên cùng một nửa mặt phẳng có bờ chứa BC và điểm  A.Qua A vẽ đường thẳng vuông góc với AD cắt Bx tại M và cắt Cy tại N.Chứng minh :

a) \(\Delta\)AMB =\(\Delta\)ADC

b) A là trung điểm của MN

c) chứng minh \(\Delta\)vuông cân

Câu 6:Cho\(\Delta\)ABC cân tại A=100 độ .Gọi M là 1 điểm nằm trong tam giác sao cho góc MBC =10 độ ;góc MCB=20 độ .Tính góc AMB

 

0
1 tháng 7 2021

A B C K E D H

a) Xét tam giác AKB và tam giác AKE

có BK = KE (gt)

 \(\widehat{BKA}=\widehat{EKA}=90^0\)(gt)

AK : chung

=> tam giác AKB = tam giác AKE

b) Ta có: \(\widehat{BAK}=\widehat{ACB}\) (vì cùng phụ \(\widehat{KAC}\))

c) Ta có: Tam giác AKB = tam giác AKE (cmt)

=> \(\widehat{ABE}=\widehat{BEA}\) mà \(\widehat{BEA}=\widehat{DEC}\)(đối đỉnh)

=> \(\widehat{ABE}=\widehat{DEC}\)

Xét tam giác DEC vuông tại D có \(\widehat{DEC}+\widehat{ECD}=90^0\)

Xét tam giác ABK vuông tại K có \(\widehat{KBA}+\widehat{BAK}=90^0\)

 mà \(\widehat{ABK}=\widehat{DEC}\) (cmt) => \(\widehat{BAK}=\widehat{ECD}\)

mà \(\widehat{BAK}=\widehat{ACB}\)(cm câu b)

=> \(\widehat{ACB}=\widehat{BCD}\) => CB là p/giác của góc ACD

d) Xét tam giác AHC có CK và AD là 2 đườn cao cắt nhau tại E => E là trực tâm

=> HE là đường cao thứ 3 => HE vuông góc với AC

mà BA vuông góc với AC 

=> HE // AB