Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A K M I C H B N
a)
Ta có nối K với M
=> Xét t/gMCK và t/gMHC ta có:
CK=CH (gt) hay ^KCM=^MCH (gt)
MC (cạnh chung)
=>t/gMCK = t/gMCH (c.g.c)
=>MK=MH ( tương ứng)
đpcm.
b) Tiếp tục nối K và H
Gọi I là giao điểm của CM và KH
Xét t/gICK và t/gICH ta có:
CK=CH (gt) hay ^HCM=^CMK (gt)
CI (cạnh chung)
=>t/gICK=t/gICH (c.g.c)
=>^CIK=^CIH( tương ứng)
Mà ^CIK+^CIH=180o( góc kề bù)
=>^CIK=^CIH=90o
=>CI_|_HK
=>CM_|_HK
đpcm.
c) Quan sát hình ta thấy ^CMH=65o=^CMN=65o (1)
Vì ^KCM+^MCN=90o
=>^MCN=90o-^KCM
=>^MCN=90o-35o
=>^MCN=65o(2)
Từ (1) và (2) vì ^NMC=^NCM => t/gNMC là t/g cân.
đpcm.
(tự vẽ hình )
câu 4:
a) có AB2 + AC2 = 225
BC2 = 225
Pytago đảo => \(\Delta ABC\)vuông tại A
b) Xét \(\Delta MAB\)và \(\Delta MDC\)
MA = MD (gt)
BM = BC ( do M là trung điểm của BC )
\(\widehat{AMB}=\widehat{CMD}\)( hai góc đối đỉnh )
=> \(\Delta MAB\)= \(\Delta MDC\) (cgc)
c) vì \(\Delta MAB\)= \(\Delta MDC\)
=> \(\hept{\begin{cases}AB=DC\\\widehat{MAB}=\widehat{MDC}\end{cases}}\)
=> AB// DC
lại có AB \(\perp\)AC => DC \(\perp\)AC => \(\Delta KCD\)vuông tại C
Xét \(\Delta\) vuông ABK và \(\Delta\)vuông KCD:
AB =CD (cmt)
AK = KC ( do k là trung điểm của AC )
=> \(\Delta\)vuông AKB = \(\Delta\)vuông CKD (cc)
=> KB = KD
d. do KB = KD => \(\Delta KBD\)cân tại K
=> \(\widehat{KBD}=\widehat{KDB}\)(1)
có \(\Delta ADC\)vuông tại C => \(AD=\sqrt{AC^2+DC^2}=15\)
=> MD = 7.5
mà MB = 7.5
=> MB = MD
=> \(\Delta MBD\)cân tại M
=> \(\widehat{MBD}=\widehat{MDB}\)(2)
Từ (1) và (2) => \(\widehat{KBD}-\widehat{MBD}=\widehat{KDB}-\widehat{MDB}\)hay \(\widehat{KBM}=\widehat{KDM}\)
Xét \(\Delta KBI\)và \(\Delta KDN\)có:
\(\widehat{KBI}=\widehat{KDN}\)(cmt)
\(\widehat{KBD}\)chung
KD =KB (cmt)
=> \(\Delta KBI\)= \(\Delta KDN\)(gcg)
=> KN =KI
=. đpcm
câu 5:
a) Xét \(\Delta ABM\)và \(\Delta MDC\):
MA=MD(gt)
MB=MC (M là trung điểm của BC)
\(\widehat{BMA}=\widehat{DMC}\)( đối đỉnh )
=> \(\Delta BMA=\Delta CMD\)(cgc)
b) Xét \(\Delta\)vuông ABC
có AM là đường trung tuyến của tam giác
=> \(AM=\frac{1}{2}BC\)mà \(BM=MC=\frac{1}{2}BC\)(do M là trung điểm của BC )
=> AM = BM = MC
có MA =MD => AM = MD =MB =MC
=> BM +MC = AM +MD hay BC =AD
Xét \(\Delta BAC\)và \(\Delta DCA\)
AB =DC
AC chung
BC =DC
=> \(\Delta BAC\)= \(\Delta DCA\)(ccc)
c. Xét \(\Delta ABM\)
BM=AM
\(\widehat{ABM}\)= 600
=> đpcm
A) XÉT \(\Delta AEN\)VÀ\(\Delta AFN\)CÓ
\(\widehat{BAM}=\widehat{CAM}\)HAY\(\widehat{EAN}=\widehat{FAN}\)
AN LÀ CẠNH CHUNG
\(\widehat{ANE}=\widehat{ANF}=90^o\)
=>\(\Delta AEN\)=\(\Delta AFN\)(g-c-g)
=> AE = AF ( HAI CẠNH TƯƠNG ỨNG )
B)
Xét 2 \(\Delta\) BME và CMF
BM=CM
^ BME=^ CMF(ĐĐ)
^EBM= ^ ACB( Góc ngoài tam giác tại B)
=> \(\Delta\) BME= \(\Delta\)CMF(G.C.G)
=> BE=CF( 2 cạnh tương ứng)
C)\(AE=AF\)
\(\Rightarrow2AE=AE+AF\)
\(=AE+AC+CF\)
\(=AE+AC+BE\)
\(=AB+AC\Rightarrow AE=\frac{AB+AC}{2}\left(ĐPCM\right)\)
A B C K E D H
a) Xét tam giác AKB và tam giác AKE
có BK = KE (gt)
\(\widehat{BKA}=\widehat{EKA}=90^0\)(gt)
AK : chung
=> tam giác AKB = tam giác AKE
b) Ta có: \(\widehat{BAK}=\widehat{ACB}\) (vì cùng phụ \(\widehat{KAC}\))
c) Ta có: Tam giác AKB = tam giác AKE (cmt)
=> \(\widehat{ABE}=\widehat{BEA}\) mà \(\widehat{BEA}=\widehat{DEC}\)(đối đỉnh)
=> \(\widehat{ABE}=\widehat{DEC}\)
Xét tam giác DEC vuông tại D có \(\widehat{DEC}+\widehat{ECD}=90^0\)
Xét tam giác ABK vuông tại K có \(\widehat{KBA}+\widehat{BAK}=90^0\)
mà \(\widehat{ABK}=\widehat{DEC}\) (cmt) => \(\widehat{BAK}=\widehat{ECD}\)
mà \(\widehat{BAK}=\widehat{ACB}\)(cm câu b)
=> \(\widehat{ACB}=\widehat{BCD}\) => CB là p/giác của góc ACD
d) Xét tam giác AHC có CK và AD là 2 đườn cao cắt nhau tại E => E là trực tâm
=> HE là đường cao thứ 3 => HE vuông góc với AC
mà BA vuông góc với AC
=> HE // AB
A B C M H
Xét tam giác ABC vuông tại A.
Theo định lí Pytago,ta có:\(AB^2+AC^2=BC^2\)
\(\Rightarrow AC^2=BC^2-AB^2=\left(CH+BH\right)^2-\left(AM+BM\right)^2\)
Gọi độ dài CH là a; BH là b. Đặt AM = BM = c (a,b,c > 0)
\(=\left(a+b\right)^2-\left(2c\right)^2=\left(a+b\right)^2-4c^2\)
Điều cần c/m tương đương với: \(a^2-b^2=\left(a+b\right)^2-4c^2\) (a,b,c > 0)
\(\Leftrightarrow a^2-b^2=a^2+2ab+b^2-4ac\)
\(\Leftrightarrow a^2-b^2-a^2-2ab-b^2-4ac=0\)
\(\Leftrightarrow-2ab-4ac=0\Leftrightarrow-2\left(ab+2ac\right)=0\)
\(\Leftrightarrow ab+2ac=0\) (vô lí,vì a,b,c > 0 nên \(ab+2ac>0\))
Vậy đề sai.
đề đúng :))
A B C M H
áp dụng định lí pytago vào tam giác vuông CMA. ta có:
CA2+AM2=CM2=> AM2=CM2-CA2 =MB2(vì MB=MA) (1)
áp dụng định lí pytago vào tam giác vuông CHM. ta có:
CH2+HM2=CM2=> CM2-CH2=HM2(2)
áp dụng định lí pytago vào tam giác vuông MHB. ta có:
MH2+HB2=MB2 (3)
từ (1), (2), (3)=> CM2-CH2+HB2=CM2-CA2
=> -CH2+HB2=-CA2 => CA2=CH2-HB2(đpcm)