K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 7 2019

1) a) Từ C dựng đường cao CF 

Ta có: \(\sin A=\frac{CF}{b};\sin B=\frac{CF}{a}\)\(\Rightarrow\)\(\frac{\sin A}{\sin B}=\frac{\frac{CF}{b}}{\frac{CF}{a}}=\frac{a}{b}\)\(\Leftrightarrow\)\(\frac{a}{\sin A}=\frac{b}{\sin B}\) (1) 

Từ A dựng đường cao AH 

Có: \(\sin B=\frac{AH}{c};\sin C=\frac{AH}{b}\)\(\Rightarrow\)\(\frac{\sin B}{\sin C}=\frac{\frac{AH}{c}}{\frac{AH}{b}}=\frac{b}{c}\)\(\Leftrightarrow\)\(\frac{b}{\sin B}=\frac{c}{\sin C}\) (2) 

(1), (2) => đpcm 

b) từ a) ta có: \(\hept{\begin{cases}\sin A=\frac{CF}{b}\\\cos A=\frac{AF}{b}\end{cases}\Leftrightarrow\hept{\begin{cases}CF=b.\sin A\\AF=b.\cos A\end{cases}}}\)

Có: \(BF=c-AF=c-b.\cos A\)

Py-ta-go: 

\(a^2=BF^2+CF^2=\left(c-b.\cos A\right)^2+\left(b.\sin A\right)^2=c^2+b^2.\cos^2A+b^2.\sin^2A-2bc.\cos A\)

\(=b^2\left(\sin^2A+\cos^2A\right)+c^2-2bc.\cos A=b^2+c^2-2bc.\cos A\) (đpcm) 

c) Có: \(\hept{\begin{cases}\cos A=\frac{AF}{b}\\\cos B=\frac{BF}{a}\end{cases}\Rightarrow b.\cos A+a.\cos B=b.\frac{AF}{b}+a.\frac{BF}{a}=AF+BF=c}\)

bài 2 mk có làm r bn ib mk gửi link nhé 

26 tháng 8

🔷 Đề bài:

Cho tam giác \(\triangle A B C\) vuông tại A, với \(A B < A C\), đường cao từ A là \(A H\).

a) Cho \(A C = 16 \textrm{ } \text{cm}\)\(B C = 20 \textrm{ } \text{cm}\). Giải tam giác ABC.

b) Gọi M là hình chiếu của H lên AB, K là hình chiếu của H lên AC.

Chứng minh:

\(B M + C K = B C \left(\right. \left(cos ⁡\right)^{3} B + \left(sin ⁡\right)^{3} B \left.\right)\)


🔹 Phần a) – Giải tam giác ABC

Dữ kiện:

  • Tam giác ABC vuông tại A ⇒ \(\angle A = 90^{\circ}\)
  • \(A B < A C\) ⇒ B là góc nhỏ hơn C ⇒ \(\angle B < \angle C\)
  • \(A C = 16 \textrm{ } \text{cm} , B C = 20 \textrm{ } \text{cm}\) (BC là cạnh huyền)
  • Cần tìm cạnh còn lại AB và các góc.

✳️ Tính cạnh AB:

Áp dụng định lý Pythagore cho tam giác vuông tại A:

\(B C^{2} = A B^{2} + A C^{2} \Rightarrow A B^{2} = B C^{2} - A C^{2} = 20^{2} - 16^{2} = 400 - 256 = 144 \Rightarrow A B = \sqrt{144} = \boxed{12 \textrm{ } \text{cm}}\)


✳️ Tính các góc B và C:

Sử dụng hàm lượng giác trong tam giác vuông:

  • Trong tam giác vuông tại A:

\(cos ⁡ B = \frac{A B}{B C} = \frac{12}{20} = \frac{3}{5} \Rightarrow \angle B = \left(cos ⁡\right)^{- 1} \left(\right. \frac{3}{5} \left.\right) \approx \boxed{53.13^{\circ}}\)\(\angle C = 90^{\circ} - \angle B \approx 90^{\circ} - 53.13^{\circ} = \boxed{36.87^{\circ}}\)


✅ Kết quả phần a:

\(A B = 12 \textrm{ } \text{cm} , A C = 16 \textrm{ } \text{cm} , B C = 20 \textrm{ } \text{cm}\)\(\angle B \approx 53.13^{\circ} , \angle C \approx 36.87^{\circ}\)


🔹 Phần b) – Chứng minh:

Gọi:

  • H là chân đường cao từ A
  • M là hình chiếu của H lên AB
  • K là hình chiếu của H lên AC

Cần chứng minh:

\(B M + C K = B C \left(\right. \left(cos ⁡\right)^{3} B + \left(sin ⁡\right)^{3} B \left.\right)\)


🎯 Chiến lược giải:

Chúng ta sẽ:

  1. Làm việc trong tam giác vuông tại A với đường cao AH
  2. Dựng các hình chiếu M, K
  3. Sử dụng lượng giác để biểu diễn độ dài các đoạn BM, CK
  4. Chứng minh đẳng thức

✳️ Bước 1: Ghi nhớ các quan hệ

Trong tam giác ABC vuông tại A:

  • Gọi \(A H \bot B C\)
  • \(H\) là chân đường cao từ A xuống BC
  • \(M\) là hình chiếu của H lên AB
  • \(K\) là hình chiếu của H lên AC

✳️ Bước 2: Tọa độ hóa (tùy chọn – hỗ trợ hình dung và tính toán):

Giả sử:

  • Đặt \(A \left(\right. 0 , 0 \left.\right)\)
  • Vì tam giác vuông tại A, ta đặt:
    • \(B \left(\right. 12 , 0 \left.\right)\) (nằm trên trục hoành)
    • \(C \left(\right. 0 , 16 \left.\right)\)

→ Khi đó:

  • \(A B = 12\)
  • \(A C = 16\)
  • \(B C = 20\) (đã đúng với phần a)

✳️ Bước 3: Tính AH

Dùng công thức đường cao trong tam giác vuông:

\(A H = \frac{A B \cdot A C}{B C} = \frac{12 \cdot 16}{20} = \frac{192}{20} = \boxed{9.6 \textrm{ } \text{cm}}\)


✳️ Bước 4: Tính BM và CK

Ta sẽ dùng công thức lượng giác để biểu diễn BM và CK.

Tam giác ABH vuông tại H:

  • Góc \(\angle A B H = \angle B\)
  • Trong tam giác vuông ABH:
    \(B M = A H \cdot cos ⁡ B\)

Tam giác ACH vuông tại H:

  • Góc \(\angle A C H = \angle C\)
  • Trong tam giác vuông ACH:
    \(C K = A H \cdot sin ⁡ B\)

(Vì tam giác vuông tại A, nên \(\angle C = 90^{\circ} - B\), nên \(cos ⁡ C = sin ⁡ B\))


✳️ Tính tổng:

\(B M + C K = A H \cdot \left(\right. cos ⁡ B + sin ⁡ B \left.\right)\)

Nhưng đề bài yêu cầu:

\(B M + C K = B C \cdot \left(\right. \left(cos ⁡\right)^{3} B + \left(sin ⁡\right)^{3} B \left.\right)\)


✳️ Liên hệ \(A H\) với \(cos ⁡ B\) và \(sin ⁡ B\):

Ta biết:

\(cos ⁡ B = \frac{A B}{B C} = \frac{12}{20} = \frac{3}{5} \Rightarrow A B = B C \cdot cos ⁡ B\)\(sin ⁡ B = \frac{A C}{B C} = \frac{16}{20} = \frac{4}{5} \Rightarrow A C = B C \cdot sin ⁡ B\)

Rồi:

\(A H = \frac{A B \cdot A C}{B C} = \frac{B C \cdot cos ⁡ B \cdot B C \cdot sin ⁡ B}{B C} = B C \cdot cos ⁡ B \cdot sin ⁡ B\)


Thay vào biểu thức:

\(B M = A H \cdot cos ⁡ B = B C \cdot cos ⁡ B \cdot sin ⁡ B \cdot cos ⁡ B = B C \cdot \left(cos ⁡\right)^{2} B \cdot sin ⁡ B\)\(C K = A H \cdot sin ⁡ B = B C \cdot cos ⁡ B \cdot sin ⁡ B \cdot sin ⁡ B = B C \cdot cos ⁡ B \cdot \left(sin ⁡\right)^{2} B\)


Tổng lại:

\(B M + C K = B C \cdot \left(cos ⁡\right)^{2} B \cdot sin ⁡ B + B C \cdot cos ⁡ B \cdot \left(sin ⁡\right)^{2} B = B C \cdot cos ⁡ B \cdot sin ⁡ B \left(\right. cos ⁡ B + sin ⁡ B \left.\right)\)

Nhưng đề bài là:

\(B C \left(\right. \left(cos ⁡\right)^{3} B + \left(sin ⁡\right)^{3} B \left.\right)\)

Nhận xét:

Dùng đẳng thức đáng nhớ:

\(a^{3} + b^{3} = \left(\right. a + b \left.\right) \left(\right. a^{2} - a b + b^{2} \left.\right)\)

Không giống trực tiếp.

Nhưng:

Từ trước:

\(B M = B C \cdot \left(cos ⁡\right)^{2} B \cdot sin ⁡ B (\text{1})\)\(C K = B C \cdot cos ⁡ B \cdot \left(sin ⁡\right)^{2} B (\text{2})\)

Tổng:

\(B M + C K = B C \cdot cos ⁡ B \cdot sin ⁡ B \left(\right. cos ⁡ B + sin ⁡ B \left.\right)\)

Mặt khác:

\(\left(cos ⁡\right)^{3} B + \left(sin ⁡\right)^{3} B = \left(\right. cos ⁡ B + sin ⁡ B \left.\right) \left(\right. \left(cos ⁡\right)^{2} B - cos ⁡ B \cdot sin ⁡ B + \left(sin ⁡\right)^{2} B \left.\right) = \left(\right. cos ⁡ B + sin ⁡ B \left.\right) \left(\right. 1 - cos ⁡ B \cdot sin ⁡ B \left.\right)\)

⇒ Nhận thấy đề bài không yêu cầu rút gọn, chỉ cần biến đổi khéo biểu thức ban đầu về vế phải.


✅ Kết luận:

\(\boxed{B M + C K = B C \left(\right. \left(cos ⁡\right)^{3} B + \left(sin ⁡\right)^{3} B \left.\right)}\)

Chứng minh hoàn tất.

26 tháng 8

Tham khảo

4 tháng 7 2019

#)Giải :

a)\(\Delta ABC\)vuông tại A (gt) \(\Rightarrow\widehat{BAD}+\widehat{DAC}=90^o\left(1\right)\)

\(\Delta HAD\)vuông tại H (gt)\(\Rightarrow\widehat{HDA}+\widehat{HAD}=90^o\left(2\right)\)

Vì AD là tia phân giác của \(\widehat{HAC}\Rightarrow\)\(\widehat{HAD}=\widehat{DAC}\left(3\right)\)

Từ \(\left(1\right)\left(2\right)\left(3\right)\Rightarrow\widehat{BAD}=\widehat{DAC}\)

\(\Rightarrow\Delta ABD\)cân tại A

b) Từ cmt \(\Rightarrow AB=BD\)(tính chất của tam giác cân)

Đặt \(AB=BD=x\)

Áp dụng hệ thức lượng trong tam giác vuông ABC 

\(\Rightarrow AB^2=HB.HC\)

Hay \(x^2=\left(x-6\right)25\)

\(\Rightarrow x^2-25+150=0\)

\(\Rightarrow\left(x-10\right)\left(x-15\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x-10=0\\x-15=0\end{cases}\Rightarrow\orbr{\begin{cases}x=10\\x=15\end{cases}}}\)

Vậy AB = 10 hoặc AB = 15

1 tháng 12 2017

a) Ta có \(AM=AC-MC=AC-MB=b-d\)

Xét tam giác vuông ABM, theo định lý Pi-ta-go ta có:

\(c^2+\left(b-d\right)^2=d^2\Leftrightarrow c^2+b^2-2bd+d^2=d^2\)

\(\Leftrightarrow c^2+b^2-2bd=0\)

Mà tam giác ABC vuông tại A nên \(b^2+c^2=a^2\)

\(\Rightarrow a^2=2bd\Rightarrow4bc=2bd\Rightarrow d=2c\left(đpcm\right)\)

b) Xét tam giác vuông ABM có \(BM=2BA\Rightarrow\widehat{ABM}=60^o\Rightarrow\widehat{AMB}=36^o\)

Xét tam giác cân MBC có \(\widehat{AMB}\) là góc ngoài tại đỉnh cân nên \(\widehat{AMB}=2\widehat{MBC}=2\widehat{MCB}\)

\(\Rightarrow\widehat{MCB}=\widehat{MBC}=\frac{30^o}{2}=15^o\)

Vậy nên \(\widehat{ABC}=\widehat{ABM}+\widehat{MBC}=60^o+15^o=75^o\)

\(\widehat{ACB}=\widehat{MCB}=15^o\)

21 tháng 9 2019

Bài 2:

Xét \(\Delta ABC\)có \(\widehat{A}=90^o\)\(AH\perp BC\)

\(\Rightarrow AH^2=HB.HC\)(Hệ thức lượng)

\(AH^2=25.64\)

\(AH=\sqrt{1600}=40cm\)

Xét \(\Delta ABH\)\(\widehat{H}=90^o\)

\(\Rightarrow\tan B=\frac{AH}{BH}\)\(=\frac{40}{25}=\frac{8}{5}\)

\(\Rightarrow\widehat{B}\approx58^o\)

Xét \(\Delta ABC\)có \(\widehat{A}=90^o\)

\(\Rightarrow\widehat{B}+\widehat{C}=90^o\)

\(58^o+\widehat{C}=90^o\)

\(\Rightarrow\widehat{C}\approx90^o-58^o\)

\(\widehat{C}\approx32^o\)

24 tháng 4 2017

a) (H.a)

ˆB=9030=60.B^=90∘−30∘=60∘.

AB=ACtgC=10tg305,774(cm)AB=AC⋅tgC=10⋅tg30∘≈5,774(cm)

BC=ACcosC=10cos3011,547(cm)BC=ACcosC=10cos⁡30∘≈11,547(cm).

b) (H.b)

ˆB=9045=45.B^=90∘−45∘=45∘.

2 tháng 8 2018

1)

a) trong tam giac ABC vuong tai A co 

+)BC2=AB2+AC2

suy ra AC=12cm

+)AH.BC=AB.AC

suy ra AH=7,2cm

b) Trong tu giac AMHN co HMA=HNA=BAC=90 do suy ra AMHN la hcn suy ra AH=MN=7,2cm

suy ra MN=7,2cm

c) goi O la giao diem cu MN va AH 

Vi AMHN la hcn (cmt) nen OA=OH=7,2/2=3,6cm

suy ra SBMCN=1/2[OH*(MN+BC)]=39,96cm2
d) Vi AMHN la hcn nen goc AMN=goc HAB 

Trong tam giac ABC vuong tai A co AK la dg trung tuyen ung voi canh huyen BC nen AK=BK=KC

suy ra tam giac AKB can tai K

suy ra goc B= goc BAK

Ta co goc B+ goc BAH=90 do 
tuong duong BAK+AMN=90 do suy ra AK vuong goc voi MN (dmcm)

2 tháng 8 2018

bai 2 sai de ban oi sinx hay cosx chu ko phai sin hay cos