K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 7 2016

ko biết. k mik nha

26 tháng 7 2016

Khánh Huyền k mik nha

1. Cho tam giác ABC, góc A = 120 độ, đường phân giác AD. Đường phân giác góc ngoài tại C cắt đường thẳng AB ở K. Gọi E là giao điểm của DK và AC. Tính số đo của góc BED.2. Cho tam giác ABC có BC = 17cm, CA = 15cm, AB = 8cm. Ba đường phân giác của tam giác cắt nhau tại O. Tính tổng các khoảng cách từ O đến ba cạnh của tam giác.3. Cho tam giác ABC vuông cân tại A, M là trung điểm của BC. Gọi D là điểm...
Đọc tiếp

1. Cho tam giác ABC, góc A = 120 độ, đường phân giác AD. Đường phân giác góc ngoài tại C cắt đường thẳng AB ở K. Gọi E là giao điểm của DK và AC. Tính số đo của góc BED.

2. Cho tam giác ABC có BC = 17cm, CA = 15cm, AB = 8cm. Ba đường phân giác của tam giác cắt nhau tại O. Tính tổng các khoảng cách từ O đến ba cạnh của tam giác.

3. Cho tam giác ABC vuông cân tại A, M là trung điểm của BC. Gọi D là điểm thuộc đoạn MC, H là hình chiếu của B trên AD. Chứng minh HM là tia phân giác của góc BHD.

4. Cho tam giác ABC và điểm I là giao điểm 3 đường phân giác của tam giác. Gọi H là chân đường vuông góc kẻ từ B đến AI. Chứng minh rằng góc IBH = góc ICA.

5. Cho tam giác ABC có góc B = 50 độ, góc C = 20 độ, đường cao AH. Tia phân giác của góc AHC cắt AC tại D. Vẽ tia Ax là tia đối của tia AB. Chứng minh điểm D nằm trên tia phân giác của góc ABC.

0
11 tháng 8 2017

a, chứng minh tứ giác ADHB nội tiếp, xác định tâm O đường tròn ngoại tiếp tứ giác. 
Ta có: 
ADB^ = 1v (gt) 
AHB^ = 1v (gt) 
=> ABHD nội tiếp đường tròn đường kính AB. 
Tâm O là trung điểm AB. 

b, chứng minh góc EAD bằng HBD và OD song song HB: 
Ta có: 
EAD^ = ABD^ (1) ( có cạnh L) 
BD là phân giác nên: 
ABD^ = HBD^ (2) 
(1) và (2) => EAD^ = HBD^. 

*cm OD song song HB: 
tam giác BOD cân và có góc AOD là góc ngoài của tam giác BOD => AOD^ = 2.ABD^ = ABC^ 
=> OD //Bc vì có 2 góc ở vị trí đồng vị = nhau. 

c, chứng minh tứ giác HCED nội tiếp: 
Ta có: 
CHD^ = 90*- AHD^ 
mà AHD^ = ABE^ ( cùng chắn cung AD) 
=> CHD^ = 90* - ABE^ (1) 
mặt khác: 
BEC^ = 180* - AEB^ 
mà AEB^ = 90 - ABE^ 
=> BEC^ =180* - 90* + ABE^ = 90* + ABE^ (2) 
(1) + (2): 
CHD^ + BEC^ = 90* - ABE^ + 90* + ABE^ = 180* 
vậy tứ giác HCED nội tiếp đường tròn. 

d, cho biết góc ABC bằng 60 độ và AB = a (a> 0 cho trước). Tính theo a diện tích tam giác ABC phần nằm ngoài đường tròn O: 
Diện tích tam giác ABC phần nằm ngoài đường tròn (gọi là S) là phần diện tích giới hạn bỡi AC, AH và cung (ADH). và S = diện tích tam giác ABC - diện tích giới hạn bỡi AB, BH và cung (ADH) (gọi là S1) 

* tính S(ABC): 
tam giác L ABH có: 
AH = a.sin 60* = a.√3/2 
BH = a/2 ( đối diện góc 30* = 1/2 cạnh huyền) 
tam giác L ABC có: 
BC = a/cos 60* = 2a. 
=> S(ABC) = AH.BC/2 = (a.√3/2).(2a)/2 = a^2√3/2 

* tính S1: 

dễ thấy:S(BOH) = S(ABH)/2 = AH.BH/4 = (a.√3/2).(a/2)/4 = a^2√3/16 
tam giác cân OBH có OBH^ = 60* => BOH^ = 60* 

S3 = diện tích hình quạt OBH = (60*/360*).OB^2.TT = 1/6.a^2/4.TT = a^2.TT/24 

S4 =diện tích giới hạn bỡi BH và cung (BH) = S3 - S(BOH) 
= a^2.TT/24 - a^2√3/16 = a^2(TT/3 -√3/2)/8 

S1 = diện tích 1/2 đường tròn - S4 
= a^2.TT/8 - a^2(TT/3 -√3/2)/8 
= a^2(TT - TT/3 + √3/2)/8 
= a^2(2TT/3 + √3/2)/8 

vậy: 
S = S(ABC) - S1 = a^2√3/2 - a^2(2TT/3 + √3/2)/8 
=(a^2/2).[(√3 - (2TT/3 + √3/2)/4] 
= a^2(45√3 -4TT)/96 
-----bạn kiểm tra lại số liệu tính toán. 

Bài 2: 
a, Chứng minh AM. AE = AC^2: 
(AB) là kí hiệu cung AB 
Ta có: 
sđ ACM^ = sđ (AM)/2 = sđ(AC -CM)/2 = sđ AEB^ 
=> tam giác ACM đồng dạng với ACE. (g.g.g) cho ta: 
AC/AE =AM/AC =>AM. AE = AC^2 

b, DM cắt BC tại I, AI cắt đường tròn O tại N. Chứng minh D, N, E thẳng hàng. 
tam giác ADE có 
DM L AE ( AMD^ = 1v góc nội tiếp chăn1/2 đường tròn) 
EH L AD ( H là giao của AD và BE) 
vậy EH và DM là 2 đường cao 
=> AI L DE 
mặt khác 
DN L AI ( góc AND^ nội tiếp chắn 1/2 đường tròn) 
=> DN // DE và có D chung => D, N, E thẳng hàng. 

c, Cho BAC = 45độ. Tính theo R chu vi hình phẳng giới hạn bởi AB, AC và cung BDC: 
Ta có: 
BOC^ = 2.BAC^ = 90* 
( góc ở tâm = 2 lần góc nội tiếp cùng chắn cung BC. 
=> cung (BDC) = 2.TT.R/4 = TT.R/2 
tam giác BOC là tam giác L cân tại O nên: 
BC = R.√2 => BH = BC/2=R.√2/2 
tam giác BHO là tam giác L cân, cho ta: 
BH = OH = R.√2/2. 
=> AH = OH + OA = R.√2/2 +R = R(1+√2/2) 
tam giác L AHB có: 
AB^2 = AH^2 + BH^2 
= R^2.(1+√2/2)^2 + R^2/2 
= R^2(1 + √2 + 1/2 + 1/2) 
= R^2.(2+√2) 
=> AB = R√(2 +√2 ) 
mà AB = AC => AB = AC= R√(2 +√2 ) 
chu vi hình phẳng: 
CV=cung (BDC) + AB +AC = TT.R/2 + 2.R√(2 +√2 )

~~~~~~~~~~ai đi qua nhớ để lại ~~~~~~~~~~~~

1. cho tam giác ABC. trên nửa mặt phẳng chứa đỉnh C có bờ là đường thẳng AB ta dựng đoạn thẳng AE vuông góc với AB và AE = AB. trên nửa mặt phẳng chứa đỉnh B có bờ là đường thẳng AC ta dựng đoạn thẳng AF vuông góc với AC và AF = AC. đường thẳng EF cắt đường cao AD của tam giác ABC ở M. vẽ AH vuông góc EF cắt BC ở K ( H thuộc EF )a) tam giác ACK = tam giác FAM b) M là trung điểm EFc) FB vuông...
Đọc tiếp

1. cho tam giác ABC. trên nửa mặt phẳng chứa đỉnh C có bờ là đường thẳng AB ta dựng đoạn thẳng AE vuông góc với AB và AE = AB. trên nửa mặt phẳng chứa đỉnh B có bờ là đường thẳng AC ta dựng đoạn thẳng AF vuông góc với AC và AF = AC. đường thẳng EF cắt đường cao AD của tam giác ABC ở M. vẽ AH vuông góc EF cắt BC ở K ( H thuộc EF )

a) tam giác ACK = tam giác FAM 

b) M là trung điểm EF

c) FB vuông góc với EC và FB = EC

2. cho tam giác ABC vuông tại A. AH là đường cao. đường phân giác góc B. góc C cắt nhau tại I ; đường phân giác góc B và BAH cắt nhau tại M ; đường phân giác góc C và góc CAH cắt nhau tại N. đường thẳng MN cắt AB,AC theo thứ tự tại B' và C'

a) CM I là trực tâm tam giác AMN

b) có kết luận gì về tam giác AB'C'

4
17 tháng 4 2018

a) Xét tam giác ACK và tam giác FAM có :

AC = FA

\(\widehat{CAK}=\widehat{AFM}\)  (Cùng phụ với góc \(\widehat{FAK}\)  )

\(\widehat{ACK}=\widehat{FAM}\)   (Cùng phụ với góc \(\widehat{DAC}\)  )

\(\Rightarrow\Delta ACK=\Delta FAM\left(g-c-g\right)\)

b) Do \(\Delta ACK=\Delta FAM\left(cma\right)\Rightarrow FM=AK\)

Chứng minh hoàn toàn tương tự câu a ta có: \(\Delta ABK=\Delta EAM\left(g-c-g\right)\)

\(\Rightarrow ME=AK\)

Từ đó suy ra FM = ME hay M là trung điểm EF.

c) Kéo dài FB cắt EC tại J. Ta chứng minh \(\widehat{FJE}=90^o\)

Xét tam giác FAB và tam giác CAE có:

FA = CA

AB = AE

\(\widehat{FAB}=\widehat{CAE}\)   (Cùng phụ với góc \(\widehat{BAC}\)  )

\(\Rightarrow\Delta FAB=\Delta CAE\left(c-g-c\right)\)

\(\Rightarrow FB=CE\) và \(\widehat{AFB}=\widehat{ACE}\)

Xét tứ giác AFJE có:

\(\widehat{AFJ}+\widehat{FJE}+\widehat{JEA}+\widehat{EAF}=360^o\)

\(\Rightarrow\widehat{ACE}+\widehat{FJE}+\widehat{CEA}+\widehat{EAC}+90^o=360^o\)

\(\Rightarrow\widehat{FJE}+\widehat{ACE}+\widehat{CEA}+\widehat{EAC}=270^o\)

\(\Rightarrow\widehat{FJE}+180^o=270^o\)

\(\Rightarrow\widehat{FJE}=90^o\)

Vậy nên \(FB\perp EC\) (đpcm).

17 tháng 4 2018

Bài 2:

A B C H I M N B' C' D E

a) Gọi giao điểm của đường phân giác ^ABC và ^ACB với AC và AB lần lượt là E và D

Dễ thấy: ^BAH=^ACB (Cùng phụ với ^HAC) => 1/2. ^BAH = 1/2. ^ACB

=> ^DAM=^ACD. Mà ^DAM+^MAC=^BAC=900 => ^ACD+^MAC=900 => AM \(\perp\)CD

hay NI\(\perp\)AM. 

Tương tự ta chứng minh MI\(\perp\)AN

Xét tam giác MAN: NI\(\perp\)AM; MI\(\perp\)AN => I là trực tâm của tam giác MAN (đpcm).

b) Do I là trực tâm của tam giác AMN (cmt) => AI\(\perp\)MN hay AI\(\perp\)B'C'

Ta có: Tam giác ABC có 2 đường phân giác ^ABC và ^ACB cắt nhau tại I => AI là phân giác ^BAC

=> AI là phân giác ^B'AC'.

Xét tam giác AB'C': AI là phân giác ^B'AC'. Mà AI\(\perp\)B'C' => Tam giác AB'C' cân tại A

 Lại có: ^B'AC'=900 => Tam giác B'AC' vuông cân tại A.

18 tháng 9 2019

Bài 1:

  B D A H C E

Vì CD và CE lần lượt là phân giác trong và phân giác ngoài của góc C nên \(CD\perp CE\)

Kẻ \(CH\perp AB\)thì \(\widehat{CED}=\widehat{HCD}\)cùng phụ với \(\widehat{EDC}\)

Ta có : \(\widehat{HCA}=90^0-\widehat{HAC}=90^0-\left[180^0-\widehat{BAC}\right]=\widehat{BAC}-90^0\)

\(\widehat{ACD}=\frac{1}{2}\widehat{ACB}=\frac{1}{2}\left[180^0-\widehat{ABC}-\widehat{BAC}\right]=90^0-\frac{1}{2}\left[\widehat{ABC}+\widehat{BAC}\right]\)

Do đó \(\widehat{HCD}=\widehat{HCA}+\widehat{ACD}=\frac{\widehat{BAC}-\widehat{ABC}}{2}\)nếu \(\widehat{BAC}>\widehat{ABC}\).

Nếu \(\widehat{BAC}< \widehat{ABC}\)thì \(\widehat{HCD}=\frac{\widehat{ABC}-\widehat{BAC}}{2}\)

Vậy \(\widehat{HCD}=\left|\frac{\widehat{BAC}-\widehat{ABC}}{2}\right|\).

2. Giả sử \(\widehat{B}>\widehat{C}\), ta có : \(\widehat{DAH}=\frac{\widehat{B}-\widehat{C}}{2}\)

Suy ra \(\widehat{B}-\widehat{C}=2\widehat{DAH}=2\cdot15^0=30^0\)

Mặt khác \(\widehat{B}+\widehat{C}=90^0\)từ đó suy ra \(\widehat{B}=60^0,\widehat{C}=30^0\)

Nếu \(\widehat{B}< \widehat{C}\)thì chứng minh tương tự,ta có \(\widehat{B}=30^0,\widehat{C}=60^0\)

P/S : Hình bài 1 chỉ mang tính chất minh họa nhé

19 tháng 9 2019

Theo yêu cầu vẽ hình của bạn Hyouka :)

2. 

B A C H D TH: ^B > ^C        B A C H D TH: ^B < ^C