K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 10 2018

a, Áp dụng tính chất 2 tiếp tuyến tại A,B,C ta chứng minh được  b + c - a 2 = AD

b,  S A B C = S A I B + S B I C + S C I A

Mà ID = IE = IF = r =>  S A B C  = p.r

c, Vì AM là phân giác của  B A C ^ =>  B M M C = B A A C

Áp dụng tính chất tỉ lệ thức thu được BM = a c c + b

b: Xét ΔAHB vuông tại H có HM là đường cao ứng với cạnh huyền AB

nên \(AM\cdot AB=AH^2\left(1\right)\)

Xét ΔAHC vuông tại H có HN là đường cao ứng với cạnh huyền AC
nên \(AN\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AM\cdot AB=AN\cdot AC\)

14 tháng 6 2019

Đề kiểm tra Toán 9 | Đề thi Toán 9

Kẻ đường cao CH của tam giác ABC. Ta có:

Đề kiểm tra Toán 9 | Đề thi Toán 9

Chứng minh tương tự ta có:

Đề kiểm tra Toán 9 | Đề thi Toán 9

Câu 1: 

a: Xét ΔAHB vuông tạiH có HD là đường cao

nên \(AD\cdot AB=AH^2\left(1\right)\)

Xét ΔAHC vuông tại H có HE là đường cao

nên \(AE\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AD\cdot AB=AE\cdot AC\)

b: \(BC=\sqrt{4^2+6^2}=2\sqrt{13}\left(cm\right)\)

\(AH=\dfrac{4\cdot6}{2\sqrt{13}}=\dfrac{12}{\sqrt{13}}\left(cm\right)\)

\(AE=\dfrac{AH^2}{AC}=\dfrac{144}{13}:6=\dfrac{24}{13}\left(cm\right)\)