Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: sin a=sin C=AB/BC
cos a=AC/BC=b/a
sin 2a=2sinacosa\(=2\cdot\dfrac{b}{a}\cdot\dfrac{AB}{BC}=\dfrac{2b\cdot AB}{a^2}\)
b: \(sin2a=sin\left(a+a\right)\)
\(=sina\cdot cosa+sina\cdot cosa\)
\(=2\cdot sina\cdot cosa\)
1)
a) trong tam giac ABC vuong tai A co
+)BC2=AB2+AC2
suy ra AC=12cm
+)AH.BC=AB.AC
suy ra AH=7,2cm
b) Trong tu giac AMHN co HMA=HNA=BAC=90 do suy ra AMHN la hcn suy ra AH=MN=7,2cm
suy ra MN=7,2cm
c) goi O la giao diem cu MN va AH
Vi AMHN la hcn (cmt) nen OA=OH=7,2/2=3,6cm
suy ra SBMCN=1/2[OH*(MN+BC)]=39,96cm2
d) Vi AMHN la hcn nen goc AMN=goc HAB
Trong tam giac ABC vuong tai A co AK la dg trung tuyen ung voi canh huyen BC nen AK=BK=KC
suy ra tam giac AKB can tai K
suy ra goc B= goc BAK
Ta co goc B+ goc BAH=90 do
tuong duong BAK+AMN=90 do suy ra AK vuong goc voi MN (dmcm)
Lời giải:
Xét tam giác vuông $ABC$ ta có:
\(\sin B=\frac{AC}{BC}(1)\)
Lại có, vì tam giác $BAH$ vuông tại $H$ nên: \(\widehat{ABC}=90^0-\widehat{BAH}=\widehat{HAC}\)
\(\Rightarrow \sin B=\sin \widehat{ABC}=\sin \widehat{HAC}=\frac{HC}{AC}(2)\)
Từ \((1);(2)\Rightarrow \sin ^2B=\frac{AC}{BC}.\frac{HC}{AC}=\frac{HC}{BC}\) (đpcm)
b)
Lấy $M$ là trung điểm của $BC$
Vì $AM$ là đường trung tuyến ứng với cạnh huyền nên \(AM=\frac{BC}{2}=MC\)
Do đó tam giác $AMC$ cân tại $M$
\(\Rightarrow \widehat{HMA}=\widehat{MAC}+\widehat{MCA}=2\widehat{MCA}=2\widehat{C}\)
\(\Rightarrow \sin 2C=\sin \widehat{HMA}=\frac{AH}{AM}=\frac{AH}{\frac{BC}{2}}=\frac{2AH}{BC}\)
Mặt khác:
\(2\sin C.\cos C=2.\frac{AH}{AC}.\frac{AC}{BC}=\frac{2AH}{BC}\)
Vậy \(\sin 2C=2\sin C\cos C\) (đpcm)
a: Ta có: \(\sin\widehat{B}=\dfrac{1}{3}\)
nên \(\dfrac{AC}{BC}=\dfrac{1}{3}\)
hay BC=3AC
Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow8\cdot AC^2=16\)
\(\Leftrightarrow AC=\sqrt{2}cm\)
\(\Leftrightarrow BC=3\sqrt{2}cm\)
\(\Leftrightarrow AH=\dfrac{4\sqrt{2}}{3\sqrt{2}}=\dfrac{4}{3}cm\)
b: \(\cos\widehat{MAH}=\dfrac{AH}{AM}=\dfrac{4}{3}:\dfrac{3\sqrt{2}}{2}=\dfrac{4}{3}\cdot\dfrac{2}{3\sqrt{2}}=\dfrac{8\sqrt{2}}{18}=\dfrac{4\sqrt{2}}{9}\)
a: Xét ΔABC vuông tại A có
\(BC^2=AB^2+AC^2\)
hay BC=10(cm)