Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét t.giác ABH vg tại H có:
AB2= BH2 + AH2 (đlí Pytago)
TS: 225= 144+ AH2
=> AH= 9(cm)
Đặt HM= x
ta có : AM2= (x+9)2
AM2 = BM2= 122 +x2
=> (x+9)2= 122 + x2
= x2 + 18x+81= 144+x2
= x2 +18x+81-144+x2=0
18x+81= 144
18x= 163
=>x=3,5
=> HM= 3,5(cm)
ta có AM= AH+HM
t/s: AM= 9+3,5
AM= 12,5
ta có BC= 2AM(t/c)
=> BC= 25
a: Xét ΔBAD vuông tại A và ΔBHA vuông tại H có
góc ABD chung
=>ΔBAD đồng dạng với ΔBHA
=>BA/BH=BD/BA
=>BA^2=BH*BD
b: Xét ΔAMB có IE//MB
nên IE/MB=AI/AM
Xét ΔAMC có ID//MC
nên ID/MC=AI/AM
=>IE/MB=ID/MC
mà MB=MC
nên IE=ID
=>I là trung điểm của ED
c: DE//BC
=>DI/BM=HI/HM
=>EI/CM=HI/HM
mà góc EIH=góc HMC
nên ΔIEH đồng dạng với ΔMCH
=>góc IHE=góc MHC
=>C,H,E thẳng hàng
Áp dụng định lý pytago ta có :
`AC^2+AB^2=BC^2`
hay `16^2+12^2=BC^2`
`=>BC^2=400`
`=>BC=20(cm)`
a: ΔABC vuông tại A
mà AM là đường trung tuyến
nên MA=MB=MC
Ta có: MA=MB
=>ΔMAB cân tại M
=>\(\widehat{MAB}=\widehat{MBA}\)
Ta có: \(\widehat{DAB}+\widehat{MAB}=\widehat{DAM}=90^0\)
\(\widehat{HAB}+\widehat{HBA}=90^0\)(ΔHAB vuông tại H)
mà \(\widehat{MAB}=\widehat{HBA}\)(cmt)
nên \(\widehat{DAB}=\widehat{HAB}\)
=>AB là phân giác của góc DAH