Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hình tự vẽ
a, \(\Delta BAM\)và \(\Delta BDM\)có
\(\widehat{ABM}=\widehat{DBM}\left(gt\right)\)
\(AM\): cạnh chung
\(\widehat{BAM}=\widehat{BDM}\left(=90^o\right)\)
\(\Rightarrow\Delta BAM=\Delta BDM\left(ch-gn\right)\)
\(\Rightarrow BA=BD\)(2 cạnh tương ứng )
Để nghĩ tiếp :(
Ta có:
∠AMB+∠ABM=90o
∠BMD+∠MBD=900
Mà ∠AMB=∠BMD (gt)
=> ∠ABM=∠MBD
Xét ΔBAM và ΔBAM có:
∠ABM=∠MBD (gt)
BM chung
∠ABM=∠MBD (cmt)
=> ΔBAM = ΔBAM (g-c-g)
=> BA=BD (2 cạnh tương ứng)
b,Xét ΔABC và ΔDBE có:
∠ABC chung
∠BAC=∠BDM=90o
BA=BD (cmt)
=> ΔABC = ΔDBE (g-c-g)
c,Ta có
BC⊥ED
AK⊥ED
=> BC//AK hay BC//AN
=> ∠ANM=∠MBC ( 2 góc slt) (1)
Mà:
DH⊥AC
BA⊥AC
=> BA//DH hay BA//DN
=> ∠MND=∠ABM ( 2 góc so le trong) (2)
Mà ∠ABM=∠MBD ( vì BM là tia phân giác của góc ABC)
Từ(1) và (2) =>∠ANM=∠MND
=> NM là tia phân giác của góc HMK
d,Ta có BM là tia phân giác của góc ABC (3)
Và NM là tia phân giác của góc HMK
Vì ∠ANM=∠MBC
∠MND=∠ABM
=> ∠ANM=∠MBC=∠MND=∠ABM
=> BN là tia phân giác của góc ABC (4)
Từ (3) và (4) => B,M,N thẳng hàng
a) Xét tam giác ABD và tam giác BHD có:
\(\widehat{BAD}=\widehat{BHD}=90^0\)
\(\widehat{ABD}=\widehat{HBD}\)(giả thiết)
BD - cạnh chung
\(\Rightarrow\)tam giác ABD = tam giác HBD (cạnh huyền - góc nhọn)
\(\Rightarrow AD=HD\)(2 cạnh tương ứng)
b) Kéo dài BD cắt KC tại I
Xét tam giác ADK và tam giác HDC có:
AD = HD (theo chứng minh câu a)
\(\widehat{DAK}=\widehat{DHC}=90^0\)
\(\widehat{ADK}=\widehat{HDC}\)(2 góc đối đỉnh)
\(\Rightarrow\)tam giác ADK = tam giác HDC (g - c - g)
\(\Rightarrow AK=HC\)
Ta có: BK = AB+AK
BC = BH + HC
\(\Rightarrow BK=BC\)
Xét tam giác BKI và tam giác BIC có:
BI - cạnh chung
\(\widehat{KBI}=\widehat{CBI}\)(gt)
BK = BC (chứng minh trên)
\(\Rightarrow\)tam giác BKI = tam giác BCI (c - g - c)
\(\Rightarrow\widehat{BIK}=\widehat{BIC}\)(2 góc tương ứng)
\(\Rightarrow IK=IC\)(2 cạnh tương ứng)
\(\Rightarrow\widehat{BKI}=\widehat{BCI}\)(2 góc tương ứng)
Mà \(\widehat{BIK}+\widehat{BIC}=180^0\)
\(\Rightarrow\widehat{BIK}=\widehat{BIC}=\frac{1}{2}180^0=90^0\)
Vậy BD vuông góc với KC tại I
c) Ta có: tam giác BDK = tam giác BDC (c - g - c) (bạn tự chứng minh nhé)
\(\Rightarrow\widehat{BKD}=\widehat{BCD}\)(2 góc tương ứng)
Mà \(\widehat{BKI}+\widehat{DKI}=\widehat{BKI}=\widehat{BCI}=\widehat{BCD}+\widehat{DCK}\)
\(\Rightarrow\widehat{DKC}=\widehat{DCK}\)
d) Ta có: AD + AK > KD (theo bất đẳng thức trong tam giác) (1)
KD > KI (theo quan hệ giữa đường vuông góc và đường xiên) (2)
Từ (1) và (2) \(\Rightarrow AD+AK>KI\)
Mà \(KI=\frac{1}{2}KC\)
\(\Rightarrow AD+AK>\frac{1}{2}KC\)
\(\Rightarrow2\left(AD+AK\right)>KC\)
a) vì D thuộc fân giác góc B => AD=DH
b) do KH vuông góc BC , CA vuông góc BK
=>giao điểm D là trực tâm của tam giác BKC
=>BD vuông góc KC
c) xét tam giác vuông KAD và tam giác vuông CHD có:
AD=DH ; góc ADK=góc HDC (đối đỉnh) => hai tam giác vuông trên bằng nhau
=> DK = DC ( cạnh tương ứng)
=> tam giác KDC cân tại D
=>góc DKC = góc DCK
d)xét tam giác ADK có :AD+AK> KD => 2(AD+AK)> 2KD (1)
xét tam giác KDC có : KD+DC >.KC
mà KD=DC => 2KD>KC (2)
Từ (1) ;(2) ta có 2(AD+AK) > KC
VẾ (1) VÀ(2) LÀ DÙNG BẤT ĐẲNG THỨC TAM GIÁC ĐÓ BẠN!
Hình tự vẽ nha bạn
a) Xét \(\Delta AHB\)và \(\Delta AKC\)có:
\(\hept{\begin{cases}\widehat{A}:chung\\AB=AC\left(gt\right)\\\widehat{AHB}=\widehat{AKC}\left(gt\right)\end{cases}}\)
\(\Rightarrow\Delta AHB=\Delta AKC\left(ch-gn\right)\)
=>AH=AK ( 2 cạnh tương ứng) -đpcm
b) Xét \(\Delta AKI\)và \(\Delta AHI\)có:
\(\hept{\begin{cases}AK=AH\\\widehat{AKI}=\widehat{AHI}\\AI:chung\end{cases}}\)
\(\Rightarrow\Delta AKI=\Delta AHI\left(ch-cgv\right)\)
\(\Rightarrow\widehat{IAK}=\widehat{IAH}\)( 2 góc tương ứng)
=> AI là ti phân giác góc KAH
Xét \(\Delta KAH\)cân tại A ( do AH=AK ) có AI là tia phân giác ứng cạnh KH
=> AI đồng thời là đường trung trực của cạnh KH (t/c) -đpcm
c) Kẻ CM \(\perp\)BE
Xét tứ giác BKCM có:
\(\hept{\begin{cases}\widehat{CKB}=90^0\\\widehat{KBM}=90^0\\\widehat{BMC}=90^0\end{cases}}\)
=> tứ giác BKCM là hình chữ nhật (dấu hiệu nhận biết)
=> BK=CM (t/c) (1)
Dễ dàng chứng minh đc: BK=CH (2)
Từ (1) và (2) có : CM=CH
Xét \(\Delta BHC\)và \(\Delta BMC\)có:
\(\hept{\begin{cases}CH=CM\\\widehat{BHC}=\widehat{BMC}\\CB:chung\end{cases}}\)
=> \(\Delta BHC=BMC\left(ch-cgv\right)\)
=> \(\widehat{CBH}=\widehat{CBM}\)(2 góc tương ứng)
=> BC là tia phân giác góc HBM
hay BC là tia phân giác HBE -đpcm
Chúc bạn học tốt!
d) Xét tam giác CME vuông tại M có CE là cạnh huyền
=>CE>CM (trong tam giác vuông cạnh huyền là cạnh lớn nhất)
mà CH=CM do \(\Delta CBH=\Delta CBM\)
=>CE>CH
e,
tam giác AIC: K là trực tâm(điểm chung của 2 đường cao)
suy ra: AK là đường cao thứ 3
suy ra: AK luôn đi qua K-trực tâm tam giác AIC
Độ dài hai cạnh của 1 tam giác bằng 6cm và 2cm tính độ dài còn lại bt rằng số đo cảu nó theo cm là số tự nhiên chẵn