K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bạn kham khảo link này nhé.

Câu hỏi của Đào Gia Khanh - Toán lớp 7 - Học toán với OnlineMath

12 tháng 5 2019

đề bài bn cho sai đấy nhé,chỗ "gọi E là giao điểm của ME và AB" ấy, ở đó đáng lẽ pk là F là giao điểm đúng ko? mk đã sửa lại rồi đấy.

a) ta có tam giác ABM=tam giác EBM(CH-GN)

=> AB=EB

gọi H là giao điểm của AE và MB

xét tam giác HBA và tam giác HBE có:

         HB cạnh chung

        \(\widehat{HBA}\)=\(\widehat{HBE}\)(gt)

       AB=EB(cmt)

=> tam giác HBA=tam giác HBE(c.g.c)

=> HA=HE => H là trung điểm của AE(1)

 \(\widehat{AHB}\)=\(\widehat{EHB}\)mà 2 góc này ở vị trí kề bù nên \(\widehat{AHB}\)=\(\widehat{EHB}\)=90 độ 

=> BH\(\perp\)AE(1)

từ (1) và (2) suy ra BM là trung trực của AE

b) xet 2 tam giác vuông AMF và EMC có:

          AM=ME(vì t.giác ABM=t.giác EBM)

        \(\widehat{AMF}\)=\(\widehat{EMC}\)(vì đối đỉnh)

=> tam giác AMF=tam giác EMC(cạnh góc vuông-góc nhọn kề)

=> MC=MF(2 cạnh tương ứng)

A B C M E F H

28 tháng 3 2018

a)  Xét 2 tam giác vuông:   \(\Delta ABM\) và    \(\Delta EBM\) có:

   \(\widehat{ABM}=\widehat{EBM}\)(gt)

  \(BM:\) CHUNG

suy ra:    \(\Delta ABM=\Delta EBM\)  (CH_GN)

b)   \(\Delta ABM=\Delta EBM\)

\(\Rightarrow\)\(AB=EB\)  =>    B   thuộc trung trực AE

         \(MA=ME\) =>   M   thuộc trung tính   AE 

suy ra:   BM   là trung trực AE

c)    \(\Delta EMC\) vuông tại  E 

=>   \(EM< MC\)

mà   \(EM=AM\)

\(\Rightarrow\)\(AM< MC\)

24 tháng 6 2020

Làm

a) Xét hai tam giác vuông ABM và tam giác vuông KBM có :

BM là cạnh chung

góc ABM = góc KBM ( gt )

Do đó : Tam giác ABM = tam giác KBM ( cạnh huyền - góc nhọn )

=> BA = BK nên B thuộc đường trung trực của AK

MA = MK nên K thuộc đường trung trực của AK 

Vậy BM là đường trung trực của AK

b)  Xét hai tam giác vuông AMN và tam giác KMC có :

góc AMN = góc KMC ( đối đỉnh )

MA = MK ( theo câu a )

Do đó : tam giác AMN = KMC ( cạnh góc vuông - góc nhọn ) 

Vậy MC = MN 

c) Phần c không dõ đề bài nên mk k giải đc câu c nếu muốn giải câu c thì cậu gửi đề bài cho mk mk giải cho

d) Ta có : AB + AN = BN 

BK + KC = BC 

Mà BA = BK ( theo câu a )

AN = KC ( Theo câu b )

=> BN = BC ( *)

Xét  tam giác NBM và tam giác CBM có : 

BM là cạnh chung

BN = BC ( theo *)

góc NBM = góc CBM ( gt )

Do đó : tam giác NBM = tam giác CBM ( c.g.c )

=> góc BMN = góc BMC 

mà góc BMN + góc BMC = 180°

=>  góc BMN = góc BMC = 180° : 2

=> góc BMN = góc BMC = 90°

Vậy BM vuông hóc với NC 

HỌC TỐT

24 tháng 6 2020

Hình bn tự vẽ nhé

a. Xét hai tam giác vuông ABM và tam giác vuông KBM có;

               góc BAM = góc BKM =  90độ

                cạnh BM chung

                góc ABM = góc KBM [ vì BM là tia pg góc B ]

Do đó ; tam giác ABM = tam giác KBM [ cạnh huyền - góc nhọn ]

\(\Rightarrow\)AB = KB nên B \(\in\)đường trung trực của AK 

và MA = MK nên M \(\in\)đường trung trực của AK 

\(\Rightarrow\)BM là đường trung trực của AK

b.Xét hai tam giác vuông AMN và tam giác vuông KMC có ;

              góc MAN = góc MKC = 90độ

              AM = KM [ theo câu a ]

              góc AMN = góc KMC [ đối đinh ]

Do đó ; tam giác AMN = tam giác KMC [ cạnh góc vuông - góc nhọn ]

\(\Rightarrow\)MN = MC [ cạnh tương ứng ]

c.Theo câu a ; tam giác ABM = tam giác KBM 

\(\Rightarrow\)AM = KM  [ cạnh tương ứng ]     [ 1 ]

Xét tam giác KMC vuông tại K nên ;

MK bé hơn MC                                    [ 2 ]

Từ [ 1 ] và [ 2  ] suy ra ; 

AM bé hơn MC 

d. Theo câu b ; tam giác AMN = tam giác KMC 

\(\Rightarrow\)AN = KC [ cạnh tương ứng ]

mà BA = BK [ vì tam giác ABM = tam giác KBM theo câu a ]

\(\Leftrightarrow\)AN + BA = KC + BK 

\(\Rightarrow\)      BN     =      BC nên B thuộc đường trung trực của CN 

mà MN = MC nên M thuộc đường trung trực của CN 

Vậy BM thuộc đường trung trực của CN 

\(\Rightarrow\)BM vuông góc với CN

Theo mk nghĩ thì câu c . So sánh AM với MC 

                                     d. BM vuông góc với CN 

HỌC TỐT

Nhớ kb với mk nha

Sửa đề: Đường trung tuyến AM

a: Xét ΔBEM vuông tại E và ΔCFM vuông tại F có

MB=MC

góc B=góc C

=>ΔBEM=ΔCFM

b: ΔBEM=ΔCFM

=>BE=CF và ME=MF

AE+EB=AB

AF+FC=AC

mà EB=FC và AB=AC

nên AE=AF

mà ME=MF

nên AM là trung trực của EF

c: Xét ΔABC có AE/AB=AF/AC

nên EF//BC

11 tháng 8 2023

a: ΔBEM=ΔCFM

b: AM là trung trực của EF

c: EF//BC

9 tháng 1 2019

Hình tự vẽ

a, \(\Delta BAM\)và \(\Delta BDM\)

\(\widehat{ABM}=\widehat{DBM}\left(gt\right)\)

\(AM\): cạnh chung 

\(\widehat{BAM}=\widehat{BDM}\left(=90^o\right)\)

\(\Rightarrow\Delta BAM=\Delta BDM\left(ch-gn\right)\)

\(\Rightarrow BA=BD\)(2 cạnh tương ứng )

Để nghĩ tiếp :(

27 tháng 3 2020

Ta có:

∠AMB+∠ABM=90o

∠BMD+∠MBD=900

Mà ∠AMB=∠BMD (gt)

=> ∠ABM=∠MBD

Xét ΔBAM và ΔBAM có:

∠ABM=∠MBD (gt)

BM  chung

∠ABM=∠MBD (cmt)

=>  ΔBAM = ΔBAM (g-c-g)

=> BA=BD (2 cạnh tương ứng)

b,Xét ΔABC và ΔDBE có:

∠ABC  chung

∠BAC=∠BDM=90o

BA=BD (cmt)

=> ΔABC = ΔDBE (g-c-g)

c,Ta có

BC⊥ED

AK⊥ED

=>  BC//AK hay BC//AN

=> ∠ANM=∠MBC ( 2 góc slt) (1)

Mà:

DH⊥AC

BA⊥AC

=> BA//DH hay BA//DN

=> ∠MND=∠ABM ( 2 góc so le trong) (2)

Mà ∠ABM=∠MBD ( vì BM là tia phân giác của góc ABC)

Từ(1) và (2) =>∠ANM=∠MND

=> NM là tia phân giác của góc HMK

d,Ta có BM là tia phân giác của góc ABC (3)

Và NM là tia phân giác của góc HMK

Vì ∠ANM=∠MBC

    ∠MND=∠ABM

=> ∠ANM=∠MBC=∠MND=∠ABM

=> BN là tia phân giác của góc ABC (4)

Từ (3) và (4) => B,M,N thẳng hàng

11 tháng 12 2019

2. Câu hỏi của le thu giang - Toán lớp 7 - Học toán với OnlineMath

1) cho góc xOy có Oz là tia phân giác , M là điểm bất kì thuộc tia Oz . qua M kẻ đường thẳng a vuông góc với Ox tại A cắt Oy tại C và vẽ đường thẳng b vuông góc Oy tại B cắt tia Ox tại Da) chứng minh tam giác AOM bằng tam giác BOM từ đó suy ra OM là đường trung trực  của đoạn thẳng ABb) tam giác DMC là tam giác jk ? vì sao ?2) cho tam giác ABC có góc A = 90 và đường phận giác BH ( H thuộc AC ) kẻ HM...
Đọc tiếp

1) cho góc xOy có Oz là tia phân giác , M là điểm bất kì thuộc tia Oz . qua M kẻ đường thẳng a vuông góc với Ox tại A cắt Oy tại C và vẽ đường thẳng b vuông góc Oy tại B cắt tia Ox tại D

a) chứng minh tam giác AOM bằng tam giác BOM từ đó suy ra OM là đường trung trực  của đoạn thẳng AB

b) tam giác DMC là tam giác jk ? vì sao ?

2) cho tam giác ABC có góc A = 90 và đường phận giác BH ( H thuộc AC ) kẻ HM vuông góc với BC ( M thuộc BC ) gọi N là gia điểm của AB và MH chúng minh

a) tam giác ABH bằng tam giác MBH

b) BH là đương trung trực cyar đoạn thẳng AM

c) AM//CN

d) BH vuông góc với CN

3) cho tam giác ABC vuông tại C có góc A = 60 và đường phân giác cua góc BAC cắt BC tại E kẻ EK vuông góc với AB tại K ( K thuộc AB ) kẻ BD vuông góc với AE tại D ( D thuộc AE ) chứng minh

a) tam giác ACE bằng tam giác AKE

b)AE là đường trung trực của đoạn thẳng CK

c) KA=KB

4) cho tam giác ABC có góc A = 90 vẽ phân giác BD và CE ( D thuộc ac , E thuộc AB ) chúng cắt nhau tại O

a) tính số đo góc BOC

b) trên BC lấy M,N sao cho BM=BA, CN=CA chứng minh EN//DM

c) gọi I là giao điểm của BD VÀ AN . chứng minh tam giác AIM vuông cân

5) cho tam giác ABC ( AB=AC ) gọi K là trung điểm của BC

a) chứng minh tam giác AKB tam giác AKC và AK vuông góc với BC

b) từ C vẽ đường vuông góc với BC cắt đường thẳng AB tại E chúng minh EC //AK

c) tam giác BCE là tam giác jk ? tính góc BEC

6) cho tam giác ABC biết AB < BC trên tia BA lấy điểm D sao cho BC= BD nối C với D . phân giác góc B cắt cạn AC , DC lần lượt ở E và I 

a) chứng minh tam giác BED = tam giác BEC và IC=ID

b) từ A vẽ đường vuông góc AH với DC ( H thuộc DC ) . chứng minh AH//BL

       VẼ HÌNH VÀ GIẢI CHI TIẾT CÁC BAI HỘ MÌNH NHA

 

5
14 tháng 2 2018

3/ (Bạn tự vẽ hình giùm. Vẽ hình dễ)

a/ \(\Delta ACE\)vuông và \(\Delta AKE\)vuông có: \(\widehat{CAE}=\widehat{EAK}\)(AE là đường phân giác của \(\Delta ABC\))

Cạnh huyền AE chung

=> \(\Delta ACE\)vuông = \(\Delta AKE\)vuông (cạnh huyền - góc nhọn) (đpcm)

b/ Ta có \(\Delta ACE\)\(\Delta AKE\)(cm câu a) => AC = AK (hai cạnh tương ứng)

Gọi M là giao điểm của AE và CK.

\(\Delta ACM\)và \(\Delta AKM\)có: AC = AK (cmt)

\(\widehat{CAM}=\widehat{MAK}\)(AM là đường phân giác của \(\Delta ABC\))

Cạnh AM chung

=> \(\Delta ACM\)\(\Delta AKM\)(c - g - c) => CM = KM (hai cạnh tương ứng) (1)

\(\widehat{AMC}=\widehat{AMK}\)(hai góc tương ứng)

Mà \(\widehat{AMC}+\widehat{AMK}\)= 180o (kề bù)

=> 2\(\widehat{AMC}\)= 180o

=> \(\widehat{AMC}\)= 90o

=> AM \(\perp\)CK (2)

Từ (1) và (2) => AE là đường trung trực của CK (đpcm)

14 tháng 2 2018

tsk nha

6 tháng 11 2017

Diễn giải:

- Khi cộng, trừ số thập phân ta tiến hành cộng hoặc trừ các phần tương ứng của các số đó.

Ví dụ 1:

Tính 0,25 + 2,5 ta làm như sau: 5 + 0 = 5 , 2 + 5 =7, 0 + 2 = 2. Vậy 0,25 + 2,5 = 2.75

Tính 8,6 - 2,7 ta làm như sau: 6 - 7 không trừ được ta lấy 16 - 7 = 9, tiếp tục 8 - 2 trừ thêm 1 nữa tức là 8 -3 = 5. Vậy 8,6 - 2,7 = 5,9

- Với phép nhân, chia các số thập phân ta cần viết chúng dưới dạng phân số.