Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét \(\Delta ABE\) và \(\Delta HBE\) có:
\(\widehat{BAE}=\widehat{BHE}=90^0\)
\(BE\) chung
\(\widehat{ABE}=\widehat{HBE}\) (tính chất phân giác)
\(\Rightarrow\Delta ABE=\Delta HBE\) (ch - gn)
b) Do \(\Delta ABE=\Delta HBE\) \(\Rightarrow AB=BH\Rightarrow\Delta ABH\) cân tại \(B\)
Mà \(BE\) là phân giác \(\Rightarrow BE\) là đường cao \(\Rightarrow BE\perp AH\)
a) xét tam giác ABE vuông tại A và tam giác HBE vuông tại H có
gócABE = gócHBE ( BE là phân giác gócABH)
BE chung
\(=>\)tam giác vuông ABE = tam giác vuông HBE ( cạnh huyền góc nhọn )
\(=>\)AE=EH ( 2 cạnh tương ứng)
b) xét tam giác AKE vuông tại A và tam giác HCE vuông tại H có
AE=EH ( theo câu a)
góc AEK = HEC ( 2 góc đối đỉnh )
\(=>\)tam giác vuông AKE = tam giác vuông HCE ( cạnh góc vuông - góc nhọn kề cạnh ấy)
\(=>\)EK=EC ( 2 cạnh tương ứng )
tham khảo
a) Xét tam giác vuông ABE và tam giác vuông HBE (^BAE = ^BHE = 90o)
BE chung
^ABE = ^HBE (BE là phân giác ^ABC)
=> tam giác vuông ABE = tam giác vuông HBE (ch - gn)
b) Ta có: AE = HE (tam giác vuông ABE = tam giác vuông HBE)
=> E thuộc đường trung trực của AH (1)
Ta có: AB = HB (tam giác vuông ABE = tam giác vuông HBE)
=> B thuộc đường trung trực của AH (2)
Từ (1) và (2) => BE là đường trung trực của AH (đpcm)
c) Ta có: ^BEK = ^BEA + ^AEK
^BEC = ^BEH + ^HEC
Mà ^BEA = ^BEH (tam giác vuông ABE = tam giác vuông HBE)
^AEK = ^HEC (2 góc đối đỉnh)
=> ^BEK = ^BEC
Xét tam giác BEK và tam giác BEC:
^BEK = ^BEC (cmt)
^KBE = ^CBE (BE là phân giác ^ABC)
BE chung
=> tam giác BEK = tam giác BEC (g - c - g)
=> EK = EC (cặp cạnh tương ứng)
a) Xét ΔABE vuông tại A và ΔHBE vuông tại H có
BE chung
\(\widehat{ABE}=\widehat{HBE}\)(BE là tia phân giác của \(\widehat{ABH}\))
Do đó: ΔABE=ΔHBE(cạnh huyền-góc nhọn)
a: Xét ΔABE vuông tại A và ΔHBE vuông tại H có
BE chung
góc ABE=góc HBE
=>ΔABE=ΔHBE
b: góc HEC+góc AEH=180 độ
góc AEH+góc ABH=180 độ
=>góc HEC=góc ABH=2*góc ABE
c: AE=EH
EH<EC
=>AE<EC
Xét ΔABE và ΔHBE : có :
^ BAE = ^ BHE = 90° ( giả thiết )
BE chung
^ABE = ^HBE ( giả thiết )
=> ΔABE=ΔHBE ( cạnh huyền -góc nhọn )
b) có ΔABE=ΔHBE ( câu a )
=> BA =BH (hai cạnh tương ứng )
gọi I là giao điểm của BE và AH .
xét ΔABI và ΔHBI:có:
BA=BH (cmt )
^ABE = ^HBE ( giả thiết )
BI chung
=>ΔABI = ΔHBE ( c-g-c )
=> AE=EH ( hai cạnh tương ứng ) (1)
=> ^BIA = ^BIH ( hai góc tương ứng )
có ^BIA + ^BIH = 180°
=> ^BIA = ^BIH = 180°:2=90°
=>BI vuông góc AH (2)
từ (1) và (2) => BE là đường trung trực của đoạn thẳng AH
c, xét ΔAEK và ΔHEC
có: ^EAK = ^EHC = 90° (gt)
AE=EH (ΔABE=ΔHBE )
^AEK=^HEC ( hai góc đối đỉnh )
=>ΔAEK và ΔHEC ( cạnh góc vuông - góc nhọn kề cạnh ấy )
=> EK=EC ( hai cạnh tương ứng )
d, có : AE<EK (trong Δ vuông cạnh huyền là cạnh lớn nhất )
mà EK=EC (câu c)
nên AE<EC (đpcm)
a: Xét ΔABE vuông tại A và ΔHBE vuông tại H có
BE chung
góc ABE=góc HBE
=>ΔABE=ΔHBE
b: Sửa đề: CM BE vuông góc AH
ΔABE=ΔHBE
=>BA=BH và EA=EH
=>BE là trung trực của AH
=>BE vuông góc AH