K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 10 2019

ΔABE = Δ HBE

⇒ BA = BH, EA = EH (các cặp cạnh tương ứng)

⇒ E, B cùng thuộc trung trực của AH

nên đường thẳng EB là trung trực của AH.

a: Xét ΔBAE vuông tại A và ΔBHE vuông tại H có

EB chung

góc ABE=góc HBE

=>ΔBAE=ΔBHE

=>BA=BH; EA=EH

=>EB là trung trực của AH

c: EA=EH

mà EA<EK

nên EH<EK

d: Xét ΔBHK vuông tại H và ΔBAC vuông tại A có

BH=BA

góc HBK chung

=>ΔBHK=ΔBAC

=>BK=BC

=>ΔBKC cân tại B

mà BE là phân giác

nen BE vuông góc KC

bạn có thể cho mh xem hình được k

 

7 tháng 3 2022

a, xét tam giác ABE và tam giác HBE có : BE chung

góc BAE = góc BHE = 90 do ...

góc ABE = góc HBE do BE là phân giác ...

=> tam giác ABE = tam giác HBE (ch - gn)

=> AE = EH

b, xét 2 tam giác vuông EAK và EHC có:

         EA=EH(theo câu a)

         ˆAEKAEK^=ˆHECHEC^(vì đối đỉnh)

=> t.giác EAK=t.giác EHC(cạnh góc vuông-góc nhọn)

=> EK=EC(2 cạnh tương ứng)

c, ta thấy E là trực tâm của tam giác CKB

=> BE⊥⊥CK

 

tham khảo

a, xét tam giác ABE và tam giác HBE có : BE chung

góc BAE = góc BHE = 90 do ...

góc ABE = góc HBE do BE là phân giác ...

=> tam giác ABE = tam giác HBE (ch - gn)

=> AE = EH

b, xét 2 tam giác vuông EAK và EHC có:

         EA=EH(theo câu a)

         ˆAEKAEK^=ˆHECHEC^(vì đối đỉnh)

=> t.giác EAK=t.giác EHC(cạnh góc vuông-góc nhọn)

=> EK=EC(2 cạnh tương ứng)

c, ta thấy E là trực tâm của tam giác CKB

=> BECK

a: Xét ΔBAE vuông tại A và ΔBHE vuông tại H có

BE chung

góc ABE=góc HBE

=>ΔBAE=ΔBHE

=>EA=EH

b: Xét ΔEAK vuông tại A và ΔEHC vuông tại H có

EA=EH

góc AEK=góc HEC

=>ΔEAK=ΔEHC

=>EK=EC

c: BK=BC

EK=EC

=>BE là trung trực của CK

=>BE vuông góc CK

14 tháng 8 2016

Xét ΔABE và ΔHBE có:

   \(\widehat{BAE}=\widehat{BHE}=90\) (gt)

   BE:cạnh chung

   \(\widehat{ABE}=\widehat{HBE}\left(gt\right)\)

=> ΔABE =ΔHBE(cạnh huyền-góc nhọn)

b) Vì ΔABE=ΔHBE(cmt)

=> AB=BH ; AE=EH

=> B,E \(\in\) đường trung trực của đoạn thẳng AH

=>BE là đường trung trực của đoạn thẳng AH

c) Xét ΔAEK và ΔHEC có:

      \(\widehat{KAE}=\widehat{CHE}=90\left(gt\right)\)

     AE=EH(cmt)

      \(\widehat{AEK}=\widehat{HEC}\)

=>ΔAEK=ΔHEC(g.c.g)

=>EK=EC

d) Xét ΔEHC vuông tại H(gt)

=> HE<EC

Mà: HE=AE(cmt)

=>AE<EC

d) Xét ΔHKC có:

KH,CA là hai đường cao

=> E là trực tâm của ΔBKC

=>BE là đường cao

=> AE vuông góc KC

15 tháng 8 2016

a)

xét 2 tam giác vuông ABE và HBE có:

BE(chung)

góc ABE= góc CBE(gt)

=> ΔABE=ΔHBE(CH-GN)

b)

gọi giao của BE và AH là F 

xét ΔABF và ΔHBF có:

AB=HB(theo câu a, ΔABE=ΔHBE)

BF(chung)

góc ABE=góc HBE(gt)

=> ΔABF=ΔHBF(c.g.c)

=>\(\begin{cases}FA=FH\\\widehat{AFB}=\widehat{BFH}=180^o:2=90^o\end{cases}\)

=> BE là đường trung trực của AH

c)

xét ΔAEK và ΔHEC có:

EA=EH(theo câu a, ΔABE=ΔHBE)

góc KAE=góc EHC=90º(gt)

góc AEK=góc CEH(2 góc đối đỉnh)

=>ΔAEK=ΔHEC(g.c.g)

=>EK=EC

d)

ta có ΔAEK vuông tại A

=> EK>AE

mà EK=EC(theo câu c)

=> AE<EC

e)

theo câu a, ta có: ΔABE=ΔHBE(CH-GN)

=>AB=HB

theo câu c, ta có: ΔAEK=ΔHEC(g.c.g)

=> AK=HC

ta có: KB=KA+AB

CB=CH+HB

=>KB=CB

=>ΔKBC cân tại B 

ta có:ΔKCB cân tại B có BE là đường phân giác

=>BE đồng thời là đường cao của ΔKBC

=>BE_|_KC 

f)

áp dụng định lí py-ta-go ta có;

\(AC^2=BC^2-AB^2=5^2-3^2=25-9=16\)

\(AC=\sqrt{16}=4\left(cm\right)\)

theo câu e; ta có ΔKBC cân tại B

=> BC=BK=5cm

AK=BC-AB=5cm-3cm=2cm

áp dụng định lí py-ta-go ta có:

\(KC^2=AK^2+AC^2=4^2+2^2=16+4=20\)

\(KC=\sqrt{20}\left(cm\right)\)

14 tháng 8 2016

a) Tam giác ABE và tam giác HBE có góc A = góc H = 90độ, góc ABE = góc HBE, cạnh huyền BE chung nên hai tam giác đó bằng nhau. 
b) từ hai tam giác trên bằng nhau suy ra BA = BH, EA = EH suy ra B và E cùng thuộc đường trung trực của AH suy ra BE là đường trung trực của AH. 
c) c/m hai tam giác vuông AKE và HCE bằng nhau theo trường hợp góc cạnh góc. suy ra EK = EC. 
d) tam giác AKE vuông tại A nên AE<EK mà EK = EC nên AE < EC.

14 tháng 8 2016

Bài này cực dễ luôn

13 tháng 5 2015

a)Ta CM được 2 tam giác vuôg ABE=HBE (cạnh huyền-góc nhọn)   =>  AB=HB(cạh tươg ứg)

Ta tiếp tục CM 2 tam giác ABD=HBD(c.g.c)  => AD=HD(cạh tươg ứg) (1) và góc ADB=góc HDB(góc tươg ứg)

Mà hai góc trên lại kề bù nhau =>ADB=HBD=180 độ/2=90 độ   =>   BE vuông góc với AH(2)

Từ (1) và (2) => BE là trung trực của AH(ĐPCM)

b) kéo dài BE cát KC tại F

Ta CM được hai tam giác vuông AEK=HEC(cạnh góc vuông-góc nhọn)  =>AK=HC(3)

Mà theo a ta có AB=HB(4)

Từ (3) và (4)  => BK=BC

Ta CM được 2 tam giác BKF=BCF(c.g.c)=>góc BFK= góc BFC(góc tươg ứg)

Mà hai góc này kề bù nên BFK=BFC=180 độ/2=90 độ=>BE vuông góc với KC(ĐPCM)

c)Ta CM được 2 tam giác BEK=BEC(c.g.c)=>EK=EC(cạnh tươg ứg)

d)TA có AE=HE(cạnh tương ứng của tam giácABE=HBE)

mà trong tam giác vuông HEC ta có HE<EC( vì trong tam giác vuông cạnh huyền luôn lớn nhất)

Vậy nên AE<EC(ĐPCM)

a: Xét ΔBKC có

KH,CA là đường cao

KH cắt CA tại E

=>E là trực tâm

=>BE vuông góc KC

b: Xét ΔBAE vuông tại A và ΔBHE vuông tại H có

BE chung

góc ABE=góc HBE

=>ΔBAE=ΔBHE

=>BA=BH 

c: Xét ΔBKC có

BE vừa là đường cao, vừa là phân giác

=>ΔBKC cân tại B