K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 4 2021

a. Áp dụng đ/l Pytago có

\(AC^2=BC^2-AB^2=100-36\)

=> AC = 8 (cm)
b/ Xét t/g ABE vg tại A và t/g HBE cg tại H có

BE chung

\(\widehat{ABE}=\widehat{CBE}\)

=> t/g ABE = t/g HBE
=> AB = HB ; AE = HE (*)
Xét t/g HEC vg tại H => EC > HE

=> AE < EC
c/ Xét t.g BCK có

KH vg góc BC
CA vg góc BK

CA cắt HK tại E
=> E là trực tâm t/g BCK

=> BE ⊥ CK (1)
(*) => BE là đường trung trực của AH

=> BE ⊥ AH (2)
(1) ; (2)
=> CK // AH
d/ Xét t.g BAH có AB = AH ; \(\widehat{ABH}=60^o\)

=> t/g BAH đều

21 tháng 4 2021

cảm ơn ạ!

Bài 1: Cho tam giác ABC vuông tại A. Trên cạnh BC lấy điểm E sao cho BE=BA. Qua E kẻ đường thẳng d vuông góc với BC và d cắt AC tại D.a) Tính độ dìa AC khi AB= 9cm, BC= 15cmb) Chứng minh: Tam giác ABD=tam giác EBDc) Gọi H là giao điểm của đường thẳng AB và đường thẳng d. Chứng minh tam giác HBC când) Chứng minh: AD<DCBài 2: Cho tam giác ABC vuông tại A có AB= 12cm, AC= 16cm.Kẻ BF là đường trung tuyến của tam...
Đọc tiếp

Bài 1: Cho tam giác ABC vuông tại A. Trên cạnh BC lấy điểm E sao cho BE=BA. Qua E kẻ đường thẳng d vuông góc với BC và d cắt AC tại D.

a) Tính độ dìa AC khi AB= 9cm, BC= 15cm

b) Chứng minh: Tam giác ABD=tam giác EBD

c) Gọi H là giao điểm của đường thẳng AB và đường thẳng d. Chứng minh tam giác HBC cân

d) Chứng minh: AD<DC

Bài 2: Cho tam giác ABC vuông tại A có AB= 12cm, AC= 16cm.Kẻ BF là đường trung tuyến của tam giác ABC. Từ điểm C kẻ đường thẳng vuông góc với AC cắt đường trung tuyến BF tại D

a) Tính độ dài BC?

b) Chứng minh rằng: Tam giác ABF=tam giác CDF

c) Chứng minh: BF<(AB+BC):2

Bài 3: Cho tam giacsABC vuông tại A; tia phân giác của góc B cắt AC tại D. Kẻ DH vuông góc với BC\(\left(H\in BC\right)\). Gọi K là giao điểm của AB và DH

a) Tính độ dài BC khi AB= 9cm, AC= 12cm

b) Chứng minh: Tam giác ABD=tam giác HBD

c) Chứng minh: Tam giác KDC cân

d) Chứng minh: AB+AC>BD+DC
Bài 4: Cho tam giác ABC vuông tại A. Trên tia BC lấy điểm H sao cho BH=BA. Tia phân giác của góc B cắt AC tại D. Gọi K là giao điểm của AB và DH

a) Tính độ dài BC khi AB= 3cm, AC= 4cm

b) Chứng minh: Tam giác ABD=tam giác HBD

c) Chứng minh \(Dh\perp BC\)

d) So sánh DH với DK

 

 

6
3 tháng 5 2019

4 bài toàn là hình, lại khó, dài , mk nghĩ chắc ko ai tl giúp bn đâu, xl nha, ngay mk mới lp 6 cx chưa thể giải đc vì đã lp 7 đâu. ah hay là bn gửi tg bài 1 cho các bn ấy giải từ từ, cứ 1 đốg thì ai giải giúp bn đc. sorry nha

*In đậm: quan trọng.

3 tháng 5 2019

#)Góp ý :

Giải thì vẫn giải đc, chỉ tại dài quá, người nhìn thấy dài thì chẳng ai muốn giải đâu, vì lười, mak mún kiếm P nhanh mà, là mình thì vẫn giải đc nhưng sẽ mất tg đó, chắc 15-30p :v

14 tháng 8 2016

Xét ΔABE và ΔHBE có:

   \(\widehat{BAE}=\widehat{BHE}=90\) (gt)

   BE:cạnh chung

   \(\widehat{ABE}=\widehat{HBE}\left(gt\right)\)

=> ΔABE =ΔHBE(cạnh huyền-góc nhọn)

b) Vì ΔABE=ΔHBE(cmt)

=> AB=BH ; AE=EH

=> B,E \(\in\) đường trung trực của đoạn thẳng AH

=>BE là đường trung trực của đoạn thẳng AH

c) Xét ΔAEK và ΔHEC có:

      \(\widehat{KAE}=\widehat{CHE}=90\left(gt\right)\)

     AE=EH(cmt)

      \(\widehat{AEK}=\widehat{HEC}\)

=>ΔAEK=ΔHEC(g.c.g)

=>EK=EC

d) Xét ΔEHC vuông tại H(gt)

=> HE<EC

Mà: HE=AE(cmt)

=>AE<EC

d) Xét ΔHKC có:

KH,CA là hai đường cao

=> E là trực tâm của ΔBKC

=>BE là đường cao

=> AE vuông góc KC

15 tháng 8 2016

a)

xét 2 tam giác vuông ABE và HBE có:

BE(chung)

góc ABE= góc CBE(gt)

=> ΔABE=ΔHBE(CH-GN)

b)

gọi giao của BE và AH là F 

xét ΔABF và ΔHBF có:

AB=HB(theo câu a, ΔABE=ΔHBE)

BF(chung)

góc ABE=góc HBE(gt)

=> ΔABF=ΔHBF(c.g.c)

=>\(\begin{cases}FA=FH\\\widehat{AFB}=\widehat{BFH}=180^o:2=90^o\end{cases}\)

=> BE là đường trung trực của AH

c)

xét ΔAEK và ΔHEC có:

EA=EH(theo câu a, ΔABE=ΔHBE)

góc KAE=góc EHC=90º(gt)

góc AEK=góc CEH(2 góc đối đỉnh)

=>ΔAEK=ΔHEC(g.c.g)

=>EK=EC

d)

ta có ΔAEK vuông tại A

=> EK>AE

mà EK=EC(theo câu c)

=> AE<EC

e)

theo câu a, ta có: ΔABE=ΔHBE(CH-GN)

=>AB=HB

theo câu c, ta có: ΔAEK=ΔHEC(g.c.g)

=> AK=HC

ta có: KB=KA+AB

CB=CH+HB

=>KB=CB

=>ΔKBC cân tại B 

ta có:ΔKCB cân tại B có BE là đường phân giác

=>BE đồng thời là đường cao của ΔKBC

=>BE_|_KC 

f)

áp dụng định lí py-ta-go ta có;

\(AC^2=BC^2-AB^2=5^2-3^2=25-9=16\)

\(AC=\sqrt{16}=4\left(cm\right)\)

theo câu e; ta có ΔKBC cân tại B

=> BC=BK=5cm

AK=BC-AB=5cm-3cm=2cm

áp dụng định lí py-ta-go ta có:

\(KC^2=AK^2+AC^2=4^2+2^2=16+4=20\)

\(KC=\sqrt{20}\left(cm\right)\)

14 tháng 8 2016

a) Tam giác ABE và tam giác HBE có góc A = góc H = 90độ, góc ABE = góc HBE, cạnh huyền BE chung nên hai tam giác đó bằng nhau. 
b) từ hai tam giác trên bằng nhau suy ra BA = BH, EA = EH suy ra B và E cùng thuộc đường trung trực của AH suy ra BE là đường trung trực của AH. 
c) c/m hai tam giác vuông AKE và HCE bằng nhau theo trường hợp góc cạnh góc. suy ra EK = EC. 
d) tam giác AKE vuông tại A nên AE<EK mà EK = EC nên AE < EC.

14 tháng 8 2016

Bài này cực dễ luôn