Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔBAD vuông tại A và ΔBHD vuông tại H có
BD chung
góc ABD=góc HBD
=>ΔBAD=ΔBHD
b: ΔBAD=ΔBHD
=>BA=BH và DA=DH
=>BD là trung trực của AH
c: HD=DA(cmt)
DA<DK(ΔDAK vuông tại A)
=>HD<DK
a) Xét ΔBAH vuông tại H và ΔBCA vuông tại A có
\(\widehat{ABH}\) chung
Do đó: ΔBAH\(\sim\)ΔBCA(g-g)
a) xét ▲ABD VÀ▲ EBD có
BD là cạnh chung
góc ABD= góc DBE
AB= BE
nên Δ ABD=Δ EBD (c.g.c)
b) vì Δ ABD=Δ EBD (cmt)
→ góc BED= góc BAC (2 góc tương ứng)
c) ta có:
AH VUÔNG VỚI BC
→ góc AHE = 90o (1)
góc bed = 90o (cmt) (2)
từ (1) và (2) suy ra DE song song với AH (2 đường thẳng cùng vuông góc với 1 đường thẳng)
a: Xét ΔABC có
BD,CE là đường cao
BD cắt CE tại H
=>H là trực tâm
=>AH vuông góc BC
b: ΔABC cân tại A
mà AH là đường cao
nên AH là phân giác của góc BAC
c: Xét ΔAEH vuông tại E và ΔADH vuông tại D có
AH chung
góc EAH=góc DAH
=>ΔAEH=ΔADH
=>AE=AD và HE=HD
=>AH là trung trực của DE
a) Xét Δ ABD và Δ ACE ta có :
AB=AC (đề bài)
Góc A chung
Góc AEC = Góc ABD (BD \(\perp\) AC và CE \(\perp\) AB)
⇒ Δ ABD = Δ ACE (góc, cạnh,góc)
b) Ta có : Δ ABD = Δ ACE (cmt)
⇒ AE=AD
⇒ Δ AED cân tại A
d) vì BD \(\perp\) AC và CE \(\perp\) AB
⇒ Δ ECB và Δ DKC là 2 Δ vuông tại E và D (1)
Ta lại có :BD=EC (Δ ABD = Δ ACE)
mà BD=DK (đề bài)
⇒ EC=DK (2)
AB=AC (Δ ABC cân tại A)
mà AE=AD (cmt) và BE=AB-AE; CD=AC-AD
⇒ CD=BE (3)
Từ (1). (2), (3) ⇒ Δ ECB = Δ DKC (cạnh, góc, cạnh)
Câu c không thấy điểm H đề bài cho bạn xem lại
a: Xét ΔABD vuông tại D và ΔACE vuông tại E có
AB=AC
góc BAD chung
=>ΔABD=ΔaCE
b: ΔABD=ΔACE
=>AD=AE
c: Xét ΔADH vuông tại D và ΔAEH vuông tại E có
AH chung
AD=AE
=>ΔADH=ΔAEH
=>HD=HE
mà AD=AE
nên AH là trung trực của ED