\(\perp\) BC (E
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 5 2019

B A C 1 2 D E F 1 2 3 4

13 tháng 5 2019

a.Xét Δvuông ABD và Δvuông EBD có:

góc B1=góc B2(BD là tia pg góc B)

BD cạnh chung

=>Δvuông ABD=Δvuông EBD(ch-gn)

=>AB=BE và AD=DE(2 cạnh tương ứng)

b.Ta có:

AB=BE;

AD=DE

=>BD là đường trung trực của AE(định lý đảo)

c.Ta có:DC>DE(ch>cgv)

mà DE=DA

=>DC>DA

Vậy DC>DA

d.Xét ΔADF và ΔCDE có:

AD=DE(cmt)

góc DAF=góc CED=90 độ

AF=EC(gt)

=>ΔADF=ΔCDE(cgc)

=>góc D1=góc D4(2 góc tương ứng)

Ta có:góc ADE+góc D4=180 độ(kề bù)

Mà góc D4=góc D1 nên suy ra:

góc ADE+góc D1=180 độ

=>A,D,F thẳng hàng

CHÚC BN HC TỐT!!!^^

5 tháng 6 2018

Ôn tập Tam giácN

a: Xét ΔBAD vuông tại A và ΔBED vuông tại E có

BD chung

góc ABD=góc EBD

Do đo: ΔBAD=ΔBED

b: Ta có:BA=BE

DA=DE
DO đó:BD là đường trung trực của AE

c:Ta có: AD=DE
mà DE<DC
nen AD<DC

4 tháng 2 2019

Cho tam giác ABC vuông tại A, BD là tia phân giác của góc B ( d thuộc AC). Kẻ DEvuông gócBC ( E thuộc BC). Trên tia đối của tia AB lấy điểm F sao cho AF = CE. Chứng minh rằng:

a) BD là đường trung trực của AF

b) AD < BC

c) Ba điểm E, D, F thẳng hàng

12 tháng 1 2020

A B C D E F

  GT  

 △ABC: AB < AC. BAD = DAC = BAC/2 (D \in BC)

 E \in AC : AE = AB

 F \in AB : AF = AC

 KL

 a, △ABD = △AED

 b, AD ⊥ FC

 c, △BDF = △EDC ; BF = EC

 d, F, D, E thẳng hàng

Bài làm:

a, Xét △ABD và △AED

Có: AB = AE (gt)

    BAD = DAE (gt) 

 AD là cạnh chung

=> △ABD = △AED (c.g.c)

b, Vì △ABD = △AED (cmt)

=> BD = ED (2 cạnh tương ứng)

=> D thuộc đường trung trực của BE   (1)

Vì AB = AE (gt) => A thuộc đường trung trực của BE   (2)

Từ (1) và (2) => AD là đường trung trực của BE

=> AD ⊥ FC

c, Vì △ABD = △AED (cmt)

=> ABD = AED (2 góc tương ứng)

Ta có: ABD + DBF = 180o (2 góc kề bù)

AED + DEC = 180o (2 góc kề bù)

Mà ABD = AED (cmt)

=> DBF = DEC

Lại có: AB + BF = AF

AE + EC = AC

Mà AB = AE (gt) ; AF = AC (gt)

=> BF = EC

Xét △BDF và △EDC

Có: BD = ED (cmt)

    DBF = DEC (cmt)

      BF = EC (cmt)

=> △BDF = △EDC (c.g.c)

d, Vì △BDF = △EDC (cmt)

=> BDF = EDC (2 góc tương ứng)

Ta có: BDE + EDC = 180o (2 góc kề bù)

=> BDE + BDF = 180o

=> FDE = 180o

=> 3 điểm F, D, E thẳng hàng

26 tháng 12 2018

a) . Xét\(\Delta ABE\) và  \(\Delta ADE\) có:

     BA = DA (gt)

     Góc BAE = góc DAE ( gt)

    AE cạnh chung

nên \(\Delta ADE\) =   \(\Delta ABE\)( c-g-c)

b) Ta có :\(\widehat{ABI}+\widehat{AIB}+\widehat{BAI}\)\(^{180^o}\)

    Suy ra : \(\widehat{AIB}\)  = \(180^o\)\(\widehat{ABI}-\widehat{BAI}\)

               \(\widehat{AID}+\widehat{DAI}+\widehat{IDA}\)=\(^{180^o}\)

    Suy ra: \(\widehat{AID}\)\(180^O\) -     \(\widehat{ADI}\)-\(\widehat{IAD}\)

   Mà \(\widehat{BAI}=\widehat{IAD}\left(gt\right)\)

         \(\widehat{ABI}=\widehat{ADI}\)(\(\Delta ABD\)cân tại A)

   \(\Rightarrow\)\(\widehat{AID}=\widehat{AIB}\)

Ta có: \(\widehat{AID}+\widehat{AIB}=180^o\)( 2 GÓC KỀ BÙ )

MÀ  \(\widehat{AID}=\widehat{AIB}\)( CHỨNG MINH TRÊN )

NÊN \(\widehat{AIB}=\widehat{AIB}=\frac{180^O}{2}=90^O\)

HAY   \(AE\perp BD\)

Câu 1. Cho tam giác ABC vuông tại A (AB<AC). Tia phân giác góc A cắt BC tại D. Trên cạnh AC lấy điểm M sao cho AM=ABa) Chứng minh: DB=DMb) Gọi E là giao điểm AB và MD. Chứng minh \(\Delta BED=\Delta MCD\)c) Gọi H là trung điểm của EC. Chứng minh ba điểm A,D,H thẳng hàngCâu 2 . Cho \(\Delta ABC\)có AB<AC. Tia phân giác góc ABC cắt AC tại D. Trên cạnh BC lấy điểm E sao cho BA=BEa) Chứng minh: DA=DEb) Tia ED cắt BA tại F....
Đọc tiếp

Câu 1. Cho tam giác ABC vuông tại A (AB<AC). Tia phân giác góc A cắt BC tại D. Trên cạnh AC lấy điểm M sao cho AM=AB

a) Chứng minh: DB=DM

b) Gọi E là giao điểm AB và MD. Chứng minh \(\Delta BED=\Delta MCD\)

c) Gọi H là trung điểm của EC. Chứng minh ba điểm A,D,H thẳng hàng

Câu 2 . Cho \(\Delta ABC\)có AB<AC. Tia phân giác góc ABC cắt AC tại D. Trên cạnh BC lấy điểm E sao cho BA=BE

a) Chứng minh: DA=DE

b) Tia ED cắt BA tại F. Chứng minh \(\Delta DAF=\Delta DEC\)

c) Gọi H là trung diểm của FC. Chứng minh ba điểm B,D,H thẳng hàng

Câu 3. Cho \(\Delta ABC\)cân tại A. Kẻ AH vuông góc với BC (\(H\in BC\))

a) Chứng minh: HB=HC

b) Kẻ \(HD\perp AB\left(D\in AB\right)\)và \(HE\perp AC\left(E\in AC\right)\). Chứng minh \(\Delta HDE\)cân

Câu 4. Cho tam giác ABC vuông tại B, đường phân giác \(AD\left(D\in BC\right)\). Kẻ DE vuông góc với \(AC\left(E\in AC\right)\)

a) Chứng minh: \(\Delta ABD=\Delta AED;\)

b) BE là đường trung trực của đoạn thẳng AD

c) Gọi F là giao điểm của hai đường thẳng AB và ED  Chứng minh BF=EC

3
4 tháng 5 2019

Câu a

Xét tam giác ABD và AMD có

AB = AM từ gt

Góc BAD = MAD vì AD phân giác BAM

AD chung

=> 2 tam guacs bằng nhau

4 tháng 5 2019

Câu b

Ta có: Góc EMD bằng CMD vì góc ABD bằng AMD

Bd = bm vì 2 tam giác ở câu a bằng nhau

Góc BDE bằng MDC đối đỉnh

=> 2 tam giác bằng nhau

BÀI 1: cho tam giác ABC vuông ở C có góc A = 60 độ. tia phân giác của góc BAC cắt BC ở E. kẻ EK \(\perp\)AB (K\(\in\)AB). kẻ BD vuông góc với AE (D \(\in\)AE) a) AC=AK ; AE \(\perp\)CK b) KA = KB c) EB >AC d) ba đường thẳng AC, BD, KE cùng đi qua một điểm. BÀI 2: cho tam giác ABC vuông tại A, đường phân giác BD. kẻ DE\(\perp\)BC (E \(\in\)BC). trên tia đối của tia AB lấy điểm F sao cho AF = CE. a) \(\Delta\)ABD =...
Đọc tiếp

BÀI 1: cho tam giác ABC vuông ở C có góc A = 60 độ. tia phân giác của góc BAC cắt BC ở E. kẻ EK \(\perp\)AB (K\(\in\)AB). kẻ BD vuông góc với AE (D \(\in\)AE)

a) AC=AK ; AE \(\perp\)CK

b) KA = KB

c) EB >AC

d) ba đường thẳng AC, BD, KE cùng đi qua một điểm.

BÀI 2: cho tam giác ABC vuông tại A, đường phân giác BD. kẻ DE\(\perp\)BC (E \(\in\)BC). trên tia đối của tia AB lấy điểm F sao cho AF = CE.

a) \(\Delta\)ABD = \(\Delta\)EBD

b) BD là đường trung trực của AE

c) AD<DC

d) \(\widehat{ADF}\) = \(\widehat{EDC}\) và E, D, F thẳng hàng.

BÀI 3: cho tam giác ABC cân tại A ( góc A = 90 độ). kẻ BD\(\perp\)AC (D\(\in\)AC), CE \(\perp\)AB (E \(\in\)AB), BD và CE cắt nhau tại H.

a) BD = CE

b) tam giác BHC cân

c) AH là đường trung trực của BC

d) trên tia BD lấy điểm K sao cho D là trung điểm của BK. so sánh: góc ECB và góc DKC

* cả 3 bài vẽ hình

1
25 tháng 3 2017

Bài 2:

A E B C D F 1 2 1 1 2 2 1 2

Giải:
a) Xét \(\Delta ABD,\Delta EBD\) có:

\(\widehat{B_1}=\widehat{B_2}\left(gt\right)\)

\(\widehat{A_1}=\widehat{E_1}=90^o\)

BD: cạnh huyền chung

\(\Rightarrow\Delta ABD=\Delta EBD\) ( c.huyền - g.nhọn ) ( đpcm )

b) Gọi giao điểm giữa AE và BD là I

\(\Delta ABD=\Delta EBD\Rightarrow AB=BE\) ( cạnh t/ứng )

\(\Rightarrow AD=DE\) ( cạnh t/ứng )

\(\Rightarrow BD\) là trung trực của AE ( đpcm )

c) Trong \(\Delta DEC\left(\widehat{E_2}=90^o\right)\Rightarrow DC>DE\)

Mà AD = DE ( theo b )

\(\Rightarrow DC>AD\left(đpcm\right)\)

d) Ta có: \(\widehat{D_2}+\widehat{ADE}=180^o\) ( kề bù )

\(\widehat{D_1}=\widehat{D_2}\left(gt\right)\)

\(\Rightarrow\widehat{D_1}+\widehat{ADE}=\widehat{FDE}=180^o\)

\(\Rightarrow E,D,F\) thẳng hàng ( đpcm )

Vậy...

25 tháng 3 2017

có chỗ sai