K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
27 tháng 4 2023
a: Xét ΔBAD vuông tại A và ΔBHD vuông tại H co
BD chung
góc ABD=góc HBD
=>ΔBAD=ΔBHD
b: DA=DH
DH<DC
=>DA<DC
c: Xét ΔBHK vuông tại H và ΔBAC vuông tại A có
BH=BA
góc HBK chung
=>ΔBHK=ΔBAC
=>BK=BC
=>ΔBKC can tại B
mà BI là trung tuyến
nên BI là phân giác của góc KBC
mà BD là phân giác
nên B,D,I thẳng hàng
LK
3 tháng 3 2018
câu này mình vừa làm ở bạn Khang Phạm Duy , HÂN nhé
tham khảo .mình giải rất chi tiết
a) Xét \(\Delta\)\(\text{ }\text{ABD}\) và \(\text{ΔHBD}\) có
\(\widehat{\text{BAD}}=\widehat{\text{BHD}}=\text{90}^{\text{o}}\)
\(\text{BD}\) là cạnh chung
\(\widehat{\text{ABD}}=\widehat{\text{HBD}}\) (do \(\text{BD}\) là tia phân giác của \(\widehat{\text{ABD}}\) )
Vậy \(\text{ΔABD = ΔHBD}\) (cạnh huyền – góc nhọn)
___________________________________________________
b) Từ \(\text{ΔABD = ΔHBD}\) (câu a) suy ra\(\text{ AD = HD}\) (hai cạnh tương ứng)
Xét \(\text{ΔDHC}\) vuông tại \(\text{H}\) có \(\text{DC}\) là cạnh huyền nên \(\text{DC}\) là cạnh lớn nhất
Do đó \(\text{DC}\)\(>\text{HD}\) nên \(\text{DC}>AD\)
________________________________________________________
c) Xét \(\text{ΔBKC}\) có \(\text{CA ⊥ BK, KH ⊥ BC}\) và \(\text{CA}\) cắt \(\text{KH}\) tại \(\text{D}\)
Do đó \(\text{D}\) là trực tâm của \(\text{BKC}\), nên \(\text{BD ⊥ KC (1)}\)
Gọi \(\text{J}\) là giao điểm của \(\text{BD và KC}\)
Xét \(\text{ΔBKJ}\) và \(\text{ΔBCJ}\) có
\(\widehat{\text{BJK}}=\widehat{BJC}=90^o\)
\(\text{BJ}\) là cạnh chung
\(\widehat{\text{KBJ}}=\widehat{\text{CBJ}}\) (do \(\text{BJ}\) là tia phân giác của \(\widehat{\text{ABD}}\) )
\(\Rightarrow\) \(\text{ΔBKJ = ΔBCJ}\) (cạnh góc vuông – góc nhọn kề)
Suy ra\(\text{ KJ = CJ}\) (hai cạnh tương ứng)
Hay \(\text{J}\) là trung điểm của \(\text{KC}\)
theo bài ra : \(\text{I}\) là trung điểm của \(\text{KC}\) nên \(\text{I}\) và \(\text{J}\) trùng nhau.
Vậy \(\text{B, D, I}\) thẳng hàng
??