Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(BC=\sqrt{9^2+6^2}=3\sqrt{13}\left(cm\right)\)
\(AH=\dfrac{AB\cdot AC}{BC}=\dfrac{6\cdot9}{3\sqrt{13}}=\dfrac{18\sqrt{13}}{13}\left(cm\right)\)
b: Xét ΔEBF vuông tạiE và ΔEDC vuông tại E có
\(\widehat{EBF}=\widehat{EDC}\)
Do đó: ΔEBF\(\sim\)ΔEDC
d: Xét ΔBAD vuông tại A và ΔBED vuông tại E có
BD chung
\(\widehat{ABD}=\widehat{EBD}\)
Do đó: ΔBAD=ΔBED
Suy ra: BA=BE và DA=DE
Xét ΔADF vuông tại A và ΔEDC vuông tại E có
DA=DE
\(\widehat{ADF}=\widehat{EDC}\)
DO đó: ΔADF=ΔEDC
Suy ra: AF=EC
=>BF=BC
=>ΔBFC cân tại B
mà BD là đường phân giác
nên BD la đường cao
a.
Xét tam giác ABH và tam giác CBA có : góc BHA = góc BAC (2 góc = 90 độ )
góc ABH = góc CBA (2 góc chung )
Suy ra tam giác ABH đồng dạng với tam giác CBA ( trường hợp g.g )
b.
Xét tam giác ABH có BI là phân giác góc ABH suy ra AI\AH = BA\BH
Suy ra AI.BH = IH . BA
ΔABC vuông tại B
=>\(BA^2+BC^2=AC^2\)
=>\(BC^2=10^2-6^2=64\)
=>\(BC=\sqrt{64}=8\left(cm\right)\)
Xét ΔABC có AD là phân giác
nên \(\dfrac{BD}{AB}=\dfrac{CD}{AC}\)
=>\(\dfrac{BD}{6}=\dfrac{CD}{10}\)
=>\(\dfrac{BD}{3}=\dfrac{CD}{5}\)
mà BD+CD=BC=8cm
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{BD}{3}=\dfrac{CD}{5}=\dfrac{BD+CD}{3+5}=\dfrac{8}{8}=1\)
=>\(BD=3\cdot1=3\left(cm\right);CD=5\cdot1=5\left(cm\right)\)
a) Xét tam giác HBA và tam giác ABC có
góc H = góc A (=90 độ)
góc ABC chung
suy ra tam giác HBA đồng dạng với tam giác ABC
b) Áp dụng định lyd Pi ta go vào tam giác vuông ABC có
BC^2= AB^2+AC^2
BC^2=12^2+16^2
BC^2 = 400
BC=căn 400 = 20 cm
+ Ta có tam HBA đồng dạng vs tam giác ABC (cmt)
suy ra HA/AC=BA/BC(t/c 2 tam giác đồng dạng)
suy ra HA/16=12/20
SUY RA HA=(16*12)/20 =9,6cm
c) ta có DE là tia phân giac
suy ra AE/EB=AD/BD 1
VÌ DF là tia p/g
suy ra FC/FADC/AD 2
TỪ 1,2 suy ra EA/EB *DB/DC*EC/FA
suy ra EA/EB*DB/DC*FC/FA =1(đfcm)
a) Xét \(\Delta OAB\)và \(\Delta OCD\)có:
\(\widehat{AOB}=\widehat{COD}\) (đối đỉnh)
\(\widehat{OAB}=\widehat{OCD}\) (slt do AB // CD)
suy ra: \(\Delta OAB~\Delta OCD\) (g.g)
b) \(\Delta OAB~\Delta OCD\) (câu a)
\(\Rightarrow\)\(\frac{OA}{OC}=\frac{OB}{OD}\)
\(\Rightarrow\)\(OC=\frac{OA.OD}{OB}=\frac{8}{3}\)cm
c) \(\Delta OAB~\Delta OCD\) (câu a)
\(\Rightarrow\)\(\frac{S_{OAB}}{S_{OCD}}=\left(\frac{AB}{CD}\right)^2=\frac{1}{4}\)