K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 4 2017

a) Chứng minh:

\(\dfrac{BE}{EN}=\dfrac{BQ}{QP}=\dfrac{BQ}{MQ}=\dfrac{AB}{AC}=\dfrac{BD}{DC}\)

=> DE // NC hay DE // AC

b) Do DE // AC nên:

\(\dfrac{DE}{CN}=\dfrac{BD}{BC}\)=> DE=\(\dfrac{BD}{BC}\).CN ( 1)

Tương tự:

DF=\(\dfrac{CD}{BC}\).BM ( 2 )

Từ ( 1 ) và ( 2 ) => \(\dfrac{DE}{DF}=\dfrac{BD}{CD}.\dfrac{CN}{BM}\)

Mà: \(\dfrac{BD}{CD}=\dfrac{AB}{AC}\)\(\dfrac{CN}{BM}=\dfrac{AC}{AB}\)

nên: \(\dfrac{DE}{DF}\)=1 => DE=DF

Ta có: góc D1=DAC=DAB=D2 => tam giác ADE= tam giác ADF

=> AE=AF

11 tháng 9 2017

a) △ABC△ABC có AD phân giác:

=>BDDC=ABAC=>BDDC=ABAC

△BEQ △BNP△BEQ △BNP

=>BEEN=BQQP=>BEEN=BQQP

△BQM △BAC△BQM △BAC

=>BQQM=ABAC=BDDC=BQQP=BEEN=>BQQM=ABAC=BDDC=BQQP=BEEN

=>BEEN=BDDC=>BEEN=BDDC

Câu b: C/m tương tự DF//AB

dùng tính chất tỉ lệ thức, ....

=>đpcmbanhqua

13 tháng 2 2018

Tự vẽ hình!

a) \(\frac{BE}{EN}=\frac{BQ}{QF}=\frac{BQ}{MQ}=\frac{AB}{AC}=\frac{BD}{DC}\)

=> DE//NC hoặc DE//AC

b) Do DE//AC nên:

\(\frac{DE}{CN}=\frac{BD}{BC}\Rightarrow DE=\frac{BD}{BC}.CN\left(1\right)\)

Tương tự, ta có:

\(DF=\frac{CD}{BC}.BM\left(2\right)\)

Từ (1) và (2) \(=\frac{DE}{DF}=\frac{BD}{CD}\cdot\frac{CN}{BM}\)

Mà: \(\frac{BD}{CD}=\frac{AB}{AC}\)và \(\frac{CN}{BM}=\frac{AC}{AB}\)

Nên \(\frac{DE}{DF}=1\Rightarrow DE=DF\)

=> \(\widehat{D_1}=\widehat{DAC}=\widehat{DAB}=\widehat{D_2}\)

\(\Rightarrow\Delta ADE=\Delta ADF\)

\(\Rightarrow AE=AF\)

13 tháng 2 2018

CM AE =AF nhé! mk nhầm

#Toán_8 CÁC anh chị (các bạn ) giải giúp em mấy bài này với!Bài 1: Tam giác ABC vuông cân tại C. Trên cạnh AC, BC lấy lần lượt các điểm P,Q sao cho AP=CQ. Từ P vẽ PM song song với BC. (M thuộc AB).a) Chứng minh PCMQ là hình chữ nhật b) Gọi I là trung điểm MQ. CHứng minh rằng khi P di chuyển trên cạnh AC; Q di chuyển trên cạnh BC thì I di chuyển trên một đoạn thẳng cố định.Bài 2: CHo tam giác ABC. Gọi O là...
Đọc tiếp

#Toán_8 CÁC anh chị (các bạn ) giải giúp em mấy bài này với!

Bài 1: Tam giác ABC vuông cân tại C. Trên cạnh AC, BC lấy lần lượt các điểm P,Q sao cho AP=CQ. Từ P vẽ PM song song với BC. (M thuộc AB).
a) Chứng minh PCMQ là hình chữ nhật 
b) Gọi I là trung điểm MQ. CHứng minh rằng khi P di chuyển trên cạnh AC; Q di chuyển trên cạnh BC thì I di chuyển trên một đoạn thẳng cố định.

Bài 2: CHo tam giác ABC. Gọi O là một điểm thuộc miền trong tam giác. M ,N,P,Q lần lượt là trung điểm các đoạn OB , OC, AC và AB.
a) CM MNPQ là hình bình hành
b) Xác định vị trí của O để MNPQ là hình chữ nhật.

Bài 3: Cho tam giác ABC (AB<AC) . Trên AB lấy điểm D. Trên AC lấy điểm E sao cho BD=CE. Gọi I ; K lần lượt là trung điểm của BC và DE. Kéo dài IK cắt AB; AC lần lượt tại M và N. CMR: tam giác AMN cân.

0