K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 8 2023

Để chứng minh rằng √2/AD = 1/AB + 1/AC, ta có thể sử dụng định lý phân giác trong tam giác vuông.

Vì tam giác ABC vuông tại A, nên ta có đường phân giác AD chia góc BAC thành hai góc bằng nhau.

Áp dụng định lý phân giác, ta có:

AB/BD = AC/CD

Từ đó, ta có:

AB/AD + AC/AD = AB/BD + AC/CD

= (AB + AC)/(BD + CD)

= (AB + AC)/BC

= 1/BC (vì tam giác ABC vuông tại A)

Vậy, ta có:

1/AD = 1/AB + 1/AC

√2/AD = √2/AB + √2/AC

Vậy, chứng minh đã được hoàn thành.

Để chứng minh rằng nếu 1/ah^2 + 1/am^2 = 2/ad^2, ta cần có thông tin chi tiết về tam giác ABC và các điều kiện đi kèm.

2/AD^2=(căn 2/AD)^2

=(1/AB+1/AC)^2

\(=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}+2\cdot\dfrac{1}{AB\cdot AC}\)

\(=\dfrac{1}{AH^2}+2\cdot\dfrac{1}{AH\cdot BC}\)

\(=\dfrac{1}{AH^2}+\dfrac{1}{AM^2}\)

a: Áp dụng định lí Pytago vào ΔBAC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow AC^2=35^2-21^2=784\)

hay AC=28cm

Xét ΔBAC vuông tại A có 

\(\sin\widehat{ABC}=\dfrac{AC}{BC}=\dfrac{4}{5}\)

nên \(\widehat{ABC}\simeq53^0\)

\(\Leftrightarrow\widehat{ACB}=37^0\)

25 tháng 8 2023
Để chứng minh MN = AD.sin(BAC), ta sẽ sử dụng định lí sin.

Trong tam giác AMN, ta có:

MN = AN.sin(∠MAN) (định lí sin)

Vì MN là hình chiếu vuông góc của D lên AB và AC, nên AN = AD.cos(∠BAC) và AM = AD.cos(∠CAB). Thay vào công thức trên, ta có:

MN = AD.cos(∠CAB).sin(∠BAC)

Do đó, để chứng minh MN = AD.sin(BAC), ta cần chứng minh rằng:

cos(∠CAB).sin(∠BAC) = sin(∠BAC)

Áp dụng định lí sin, ta có:

cos(∠CAB).sin(∠BAC) = sin(∠BAC).cos(∠CAB)

Vì cos(∠CAB) = cos(90° - ∠BAC) = sin(∠BAC), nên:

sin(∠BAC).cos(∠CAB) = sin(∠BAC).sin(∠BAC) = sin^2(∠BAC)

Vậy, MN = AD.sin(BAC).

Như vậy, đã chứng minh hai điều kiện trên.