K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 10 2019

A B C H D I E

a) Py-ta-go \(\Delta ABH\), ta có : \(AB^2=AH^2+BH^2=25\Rightarrow AB=5\)

\(AH^2=BH.HC\Rightarrow HC=\frac{AH^2}{BH}=\frac{16}{3}\)

\(AB.AC=AH.BC\)hay \(5.AC=4.\left(3+\frac{16}{3}\right)\Rightarrow AC=\frac{20}{3}\)

b) HB // DI ( cùng vuông góc AI )

\(\Rightarrow\frac{BH}{DI}=\frac{AB}{AD}=\frac{1}{2}\Rightarrow DI=2BH=6\)

\(\frac{AH}{HI}=\frac{AB}{BD}=1\)kết hợp với AH = 2HE \(\Rightarrow AH=HI=IE=4\)

\(\tan\widehat{IED}=\frac{DI}{IE}=\frac{6}{4}=\frac{3}{2}\)

\(\tan\widehat{HCE}=\frac{HE}{HC}=\frac{8}{\frac{16}{3}}=\frac{3}{2}\)

c) theo câu b, \(\Rightarrow\tan\widehat{IED}=\tan\widehat{HCE}=\frac{3}{2}\)\(\Rightarrow\widehat{IED}=\widehat{HCE}\)

d) \(\widehat{HCE}+\widehat{HEC}=90^o\Rightarrow\widehat{IED}+\widehat{HEC}=90^o\Rightarrow\widehat{DEC}=90^o\Rightarrow DE\perp EC\)

18 tháng 12 2021

Đáp án bài? 

6 tháng 9 2015

bạn vô đây coi bài nào thích hớp thì xem Cho tam giác ABC. Trên tia đối của tia BC lấy điểm D sao cho BD = AB. Trên tia đối của tia CB lấy điểm E sao cho CE = AC. Gọi H là chân đường vuông góc kể từ B đến AD, K là chân đường vuông góc kẻ từ C đến AE a) Chứng minh rằng HK song song với DE b) Tính HK, biết chu vi tam giác ABC bằng 10 cm Bài 2 Cho tam giác ABC, đường trung tuyến AM. Trên tia đối của tia AM lấy điểm N sao cho AN = AM. Gọi K là giao điểm của CA và NB. Chứng minh NK = 1/2 KB... Xem thêm - Tìm với Google

DD
21 tháng 7 2021

a) Xét tam giác \(AHB\)vuông tại \(H\)

\(AB^2=AH^2+HB^2\)(định lí Pythagore) 

\(\Rightarrow AB=\sqrt{AH^2+HB^2}=\sqrt{4^2+3^2}=5\left(cm\right)\)

Xét tam giác \(ABC\)vuông tại \(A\)đường cao \(AH\)

\(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}\Leftrightarrow\frac{1}{AC^2}=\frac{1}{AH^2}-\frac{1}{AB^2}=\frac{1}{4^2}-\frac{1}{5^2}\)

\(\Rightarrow AC=\frac{20}{3}\left(cm\right)\)

\(BC^2=AB^2+AC^2\)(định lí Pythagore) 

\(\Rightarrow BC=\sqrt{AB^2+AC^2}=\sqrt{25+\frac{400}{9}}=\frac{25}{3}\left(cm\right)\)

\(HC=BC-HB=\frac{25}{3}-3=\frac{16}{3}\left(cm\right)\)

b) Xét tam giác \(AID\)có: \(B\)là trung điểm của \(AD\)

\(BH//ID\)(vì cùng vuông góc với \(AI\)

nên \(BH\)là đường trung bình của tam giác \(AID\).

Suy ra \(H\)là trung điểm của \(AI\).

\(\Rightarrow AH=HI\Rightarrow HI=\frac{1}{2}HE\)

do đó \(I\)là trung điểm của \(HE\).

\(P=2tan\widehat{IED}-3tan\widehat{ECH}\)

\(=2\frac{ID}{IE}-3\frac{CH}{HE}\)

\(=\frac{4HB}{AH}-\frac{3}{2}\frac{CH}{AH}\)

\(=\frac{8.3-3.\frac{16}{3}}{2.4}=1\)

c) \(tan\widehat{IED}=\frac{ID}{IE}=\frac{2HB}{AH}=\frac{2.3}{4}=\frac{3}{2}\)

\(cot\widehat{CEH}=\frac{EH}{CH}=\frac{2AH}{CH}=\frac{2.4}{\frac{16}{3}}=\frac{3}{2}\)

\(tan\widehat{IED}=cot\widehat{CEH}\Rightarrow\widehat{IED}+\widehat{CEH}=90^o\Rightarrow\widehat{CED}=90^o\)

do đó ta có đpcm. 

10 tháng 8 2016

GIẢI:

 

a) Xét Δ ABC và Δ AED, ta có :

\widehat{BAC}= \widehat{DAC}=90^0 (đối đỉnh)

AB = AD (gt)

AC = AD (gt)

=> Δ ABC = Δ AED (hai cạnh góc vuông)

=> BC = DE

Xét Δ ABD, ta có :

\widehat{BAC}=90^0 (Δ ABC vuông tại A)

=> AD \bot AE

=>  \widehat{BAD}=90^0

=> Δ ABD vuông tại A.

mà : AB = AD (gt)

=> Δ ABD vuông cân tại A.

=>\widehat{BDC}=45^0

cmtt : \widehat{BCE}=45^0

=> \widehat{BDC}=\widehat{BCE}=45^0

mà : \widehat{BDC},\widehat{BCE} ở vị trí so le trong

=> BD // CE

b) Xét Δ MNC, ta có :

NK \bot MC = > NK là đường cao thứ 1.

MH \bot NC = > MH là đường cao thứ 2.

NK cắt MH tại A.

=> A là trực tâm. = > CA là đường cao thứ 3.

=> MN \bot AC tại I.

mà : AB \bot AC

=> MN // AB.

c) Xét Δ AMC, ta có :

 \widehat{MAE}= \widehat{BAH} (đối đỉnh)

\widehat{MEA}= \widehat{BCA} (Δ ABC = Δ AED)

=>\widehat{MAE}=\widehat{MEA} (cùng phụ góc ABC)

=> Δ AMC cân tại M

=> AM = ME (1)

Xét Δ AMI và Δ DMI, ta có :

\widehat{AIM }= \widehat{DIM}=90^0 (MN \bot AC tại I)

IM cạnh chung.

mặt khác : \widehat{IMA }= \widehat{MAE} (so le trong)

\widehat{DMI }= \widehat{MEA} (đồng vị)

mà : \widehat{MAE}=\widehat{MEA} (cmt)

=> \widehat{IMA }= \widehat{IMD}

=> Δ AMI = Δ DMI (góc nhọn – cạnh góc vuông)

=> MA = MD (2)

từ (1) và (2), suy ta : MA = ME = MD

ta lại có : ME = MD = DE/2 (D, M, E thẳng hàng)

=>MA = DE/2.

29 tháng 6 2020

từ cách vẽ hình

 

15 tháng 8 2020

a)

Có:    \(AH^2=HB.HC\left(HTL\right)\)

=>     \(16=3HC\Rightarrow HC=\frac{16}{3}\)

Lần lượt áp dụng định lí PYTAGO ta được:   

\(\hept{\begin{cases}AH^2+HB^2=AB^2\\AH^2+HC^2=AC^2\end{cases}}\)

=>    \(\hept{\begin{cases}16+9=AB^2\\16+\frac{256}{9}=AC^2\end{cases}}\)

=>    \(\hept{\begin{cases}AB=5\\AC=\frac{20}{3}\end{cases}}\)

b) Có:  BH và DI cùng vuông góc với EI 

=> BH // DI

=> ÁP DỤNG ĐỊNH LÍ TALET TA ĐƯỢC:

=> \(\frac{AB}{AD}=\frac{AH}{AI}=\frac{BH}{DI}\)

Mà:    \(\frac{AB}{AD}=\frac{1}{2}\left(gt\right)\)

=>   \(\frac{AH}{AI}=\frac{BH}{DI}=\frac{1}{2}\)

=>   \(AH=HI\)

=>    \(DI=6;HI=4\)

MÀ:    \(EA=AH\left(gt\right)=4\)

=> DIện tích tam giác IED \(=\frac{ID.IE}{2}=\frac{6.12}{2}=36\)

Có: \(HC=\frac{16}{3};HE=8\left(CMT\right)\)

=> Diện tích tam giác HCE    \(=\frac{HC.HE}{2}=\frac{16}{3}.8:2=\frac{64}{3}\)

Câu c xem lại đề nha, mình vẽ thì DE ko vuông góc với EC đâu nhaaaaaaa

a: BC=căn 15^2+20^2=25cm

AH=15*20/25=12cm

b: Xét ΔABD có

AH vừa là đường cao, vừa là trung tuyến

=>ΔABD cân tại A

=>tan ADH=tan ABD=tan ABC=AC/AB=4/3

Xét ΔABC vuông tại A có AH là đường cao

nên AH^2=HB*HC=HD*HC

25 tháng 9 2023

có ai giải được câu d bài này k?

23 tháng 10 2016

Ta có ∆AHD có AH = HD và AHD = 90 nên ∆AHD vuông cân tại H

=> HAD = HDA = 45

=> ADE = 90 - HDA = 45

Tứ giác ABDE nội tiếp đường tròn vì có ABE +  BDE = 180

=> ABE = ADE = 45 (1)

Mà ∆ABE lại có ABE = 90 (2)

Từ (1) và (2) => ∆ABE vuông cân tại A 

=> AB = AE

23 tháng 10 2016

a/ Ta có AE  // AH( vì cùng vuông góc BC)

=> HD/HC = AE/AC

=> AC.HD = AE.HC (1)

Ta lại có AB = AE (2)

AH = HD (3)

Từ (1), (2), (3) => AB.HC = AC.AH