K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có

góc B chung

Do đó: ΔHBA\(\sim\)ΔABC

b: \(BC=\sqrt{15^2+20^2}=25\left(cm\right)\)

\(AH=\dfrac{AB\cdot AC}{BC}=12\left(cm\right)\)

c: Xét ΔAHB vuông tại H có HM là đường cao

nên \(AM\cdot AB=AH^2\left(1\right)\)

Xét ΔAHC vuông tại H có HN là đường cao

nên \(AN\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AM\cdot AB=AN\cdot AC\)

a: Xet ΔHBA vuông tại H và ΔABC vuông tại A có

góc B chung

=>ΔHBA đồng dạng với ΔABC

b: \(BC=\sqrt{15^2+20^2}=25\left(cm\right)\)

AH=15*20/25=12(cm)

c: ΔAHB vuông tại H có HM vuông góc AB

nên AM*AB=AH^2

ΔAHC vuông tại H có HN vuông góc AC

nên AN*AC=AH^2=AM*AB

Xét ΔAHB vuông tại H có HM là đường cao

nên \(AM\cdot AB=AH^2\left(1\right)\)

Xét ΔAHC vuông tại H có HN là đường cao

nên \(AN\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AM\cdot AB=AN\cdot AC\)

hay AM/AC=AN/AB

Xét ΔAMN vuông tại A và ΔACB vuông tại A có

AM/AC=AN/AB

Do đó: ΔAMN\(\sim\)ΔACB

9 tháng 5 2021

a, Xét △ABC và △HBA có:

∠AHB=∠BAC (=90o), ∠ABC chung

⇒△ABC∼△HBA (g.g)

⇒ \(\dfrac{AB}{BC}=\dfrac{BH}{AB}\) ⇒ AB2=BH.BC

b, Xét △EDC và △BAC có:

∠BAC=∠EDC (=90o) , ∠BCA chung

⇒ △EDC∼△BAC (g.g)

⇒ \(\dfrac{DC}{AC}=\dfrac{EC}{BC}\) ⇒ \(\dfrac{DC}{EC}=\dfrac{AC}{BC}\)

Xét △ADC và △BEC có:

\(\dfrac{DC}{EC}=\dfrac{AC}{BC}\) (C/m trên)

∠BCA chung

⇒ △ADC∼△BEC (c.g.c)

⇒ ∠ADC=∠BEC

 

 

 

 

9 tháng 5 2021

c, từ b, △ADC∼△BEC

⇒ \(\dfrac{DA}{BE}=\dfrac{AC}{BC}\) (1)

Xét △AHC và △BAC có:

∠AHC=∠BAC (=90o) , ∠BCA chung

⇒ △AHC∼△BAC (g.g)

⇒ \(\dfrac{CH}{AC}=\dfrac{AC}{BC}\) (2)

Từ (1) và (2) ⇒ \(\dfrac{CH}{AC}=\dfrac{DA}{EB}\)

14 tháng 3 2023

a. Xét tam giác HAC và tam giác ABC, có:

\(\widehat{C}\) : chung

\(\widehat{AHC}=\widehat{BAC}=90^o\)

Vậy tam giác \(HAC\sim\) tam giác \(ABC\) ( g.g )

b.\(\Rightarrow\dfrac{AH}{AB}=\dfrac{AC}{BC}\) (1)

Áp dụng định lý pytago tam giác ABC, ta có:

\(BC=\sqrt{AB^2+AC^2}=\sqrt{15^2+20^2}=25\left(cm\right)\)

\(\left(1\right)\Leftrightarrow AH=\dfrac{AC.AB}{BC}=\dfrac{20.15}{25}=12\left(cm\right)\)

c. Tam giác AHB có phân giác AD:

\(\Rightarrow\dfrac{AH}{AB}=\dfrac{HD}{BD}\) (2) 

(1)(2) \(\Rightarrow\dfrac{HD}{BD}=\dfrac{AC}{BC}\) hay \(\dfrac{BD}{HD}=\dfrac{BC}{AC}\)

 

8 tháng 3 2022

a.Xét tam giác ANH và tam giác AHC, có:

\(\widehat{ANH}=\widehat{AHC}=90^0\)

\(\widehat{NAH}=\widehat{HCA}\) ( cùng phụ với \(\widehat{A}\) )

Vậy tam giác ANH đồng dạng tam giác AHC ( g.g )

b. Xét tam giác AHB và tam giác ABC, có:

\(\widehat{BAC}=\widehat{AHB}=90^0\)

\(\widehat{B}:chung\)

Vậy tam giác AHB đồng dạng tam giác ABC ( g.g )

\(\Rightarrow\dfrac{AH}{AC}=\dfrac{BH}{AB}\)

\(\Leftrightarrow\dfrac{12}{13}=\dfrac{BH}{15}\)

\(\Leftrightarrow13BH=180\)

\(\Leftrightarrow BH=\dfrac{180}{13}cm\)

Xét tam giác AHC và tam giác ABC, có:

\(\widehat{CAB}=\widehat{CHA}=90^0\)

\(\widehat{C}:chung\)

Vậy tam giác AHC đồng dạng tam giác ABC ( g.g )

\(\Rightarrow\dfrac{AH}{AB}=\dfrac{CH}{AC}\)

\(\Leftrightarrow\dfrac{12}{15}=\dfrac{CH}{13}\) \(\Leftrightarrow\dfrac{4}{5}=\dfrac{CH}{13}\)

\(\Leftrightarrow5CH=52\)

\(\Leftrightarrow CH=\dfrac{52}{5}cm\)

16 tháng 12 2023

a: Xét ΔABC có AH là đường cao

nên \(S_{ABC}=\dfrac{1}{2}\cdot AH\cdot BC\left(1\right)\)

Ta có: ΔABC vuông tại A

=>\(S_{ABC}=\dfrac{1}{2}\cdot AB\cdot AC\left(2\right)\)

Từ (1) và (2) suy ra \(AH\cdot BC=AB\cdot AC\)

Ta có: ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(BC^2=15^2+20^2=625\)

=>\(BC=\sqrt{625}=25\left(cm\right)\)

Xét ΔABC vuông tại A có AH là đường cao

nên \(AH\cdot BC=AB\cdot AC\)

=>\(AH\cdot25=15\cdot20=300\)

=>\(AH=\dfrac{300}{25}=12\left(cm\right)\)

b: Xét ΔAHB vuông tại H có HM là đường cao

nên \(AM\cdot AB=AH^2\left(3\right)\)

Xét ΔAHC vuông tại H có HN là đường cao

nên \(AN\cdot AC=AH^2\left(4\right)\)

Từ (3) và (4) suy ra \(AM\cdot AB=AN\cdot AC\)

=>\(\dfrac{AM}{AC}=\dfrac{AN}{AB}\)

Xét ΔAMN vuông tại A và ΔACB vuông tại A có

\(\dfrac{AM}{AC}=\dfrac{AN}{AB}\)

Do đó: ΔAMN đồng dạng với ΔACB

c: Ta có: ΔABC vuông tại A

mà AK là đường trung tuyến

nên AK=KC=KB

Ta có: KA=KC

=>ΔKAC cân tại K

=>\(\widehat{KAC}=\widehat{KCA}\)

Ta có: ΔAMN đồng dạng với ΔACB

=>\(\widehat{ANM}=\widehat{ABC}\)

Ta có: \(\widehat{KAC}+\widehat{ANM}\)

\(=\widehat{ABC}+\widehat{KCA}=90^0\)

=>AK\(\perp\)MN tại I

Xét ΔABC vuông tại A có AH là đường cao

nên \(BH\cdot BC=BA^2;CH\cdot BC=CA^2\)

=>\(BH\cdot25=15^2=225;CH\cdot25=20^2=400\)

=>BH=225/25=9(cm); CH=400/25=16(cm)

Xét ΔAHB vuông tại H có HM là đường cao

nên \(AM\cdot AB=AH^2\)

=>\(AM\cdot15=12^2\)=144

=>AM=144/15=9,6(cm)

Ta có: AMHN là hình chữ nhật

=>AH=MN

mà AH=12cm

nênMN=12cm

Ta có: ΔANM vuông tại A

=>\(AN^2+AM^2=NM^2\)

=>\(AN^2+9,6^2=12^2\)

=>AN=7,2(cm)

Xét ΔIMA vuông tại I và ΔAMN vuông tại A có

\(\widehat{IMA}\) chung

Do đó: ΔIMA đồng dạng với ΔAMN

=>\(\dfrac{S_{IMA}}{S_{AMN}}=\left(\dfrac{AM}{MN}\right)^2=\left(\dfrac{4}{5}\right)^2=\dfrac{16}{25}\)

=>\(S_{IMA}=\dfrac{16}{25}\cdot\dfrac{1}{2}\cdot AM\cdot AN=22,1184\left(cm^2\right)\)

16 tháng 12 2023

cảm ơn ạ