K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 5 2021

a, Xét △BHA và △BAC có:

∠AHB=∠BAC (=90o), ∠ABC chung

⇒△BHA∼△BAC (g.g)

⇒ \(\dfrac{AB}{BC}=\dfrac{BH}{AB}\) ⇒ BA2=BH.BC

b, Xét △IHC và △BKC có:

∠BKC=∠IHC (=90o), ∠KCB chung

=> △IHC∼△BKC (g.g)

⇒ \(\dfrac{CH}{CK}=\dfrac{CI}{CB}\) ⇒ CH.CB=CI.CK

 

9 tháng 5 2021

a)xét △BHA và△BAC:

- AB chung

-góc B chung

- góc AHB=góc BAC

⇒△BHA đồng dạng với △BAC

 

a) Xét ΔBHA vuông tại H và ΔBAC vuông tại A có 

\(\widehat{ABH}\) chung

Do đó: ΔBHA\(\sim\)ΔBAC(g-g)

Suy ra: \(\dfrac{BA}{BC}=\dfrac{BH}{BA}\)

hay \(BA^2=BH\cdot BC\)

b) Xét ΔCHI vuông tại H và ΔCKB vuông tại K có 

\(\widehat{ICH}\) chung

Do đó: ΔCHI\(\sim\)ΔCKB(g-g)

Suy ra: \(\dfrac{CH}{CK}=\dfrac{CI}{CB}\)

hay \(CH\cdot CB=CK\cdot CI\)

a: Xét ΔCKB vuông tại K và ΔCHI vuông tại H có

góc KCB chung

=>ΔCKB đồng dạng với ΔCHI

=>CK/CH=CB/CI

=>CK*CI=CH*CB=CA^2

b: Xét ΔBHD vuông tại H và ΔBKC vuông tại K có

góc KBC chung

=>ΔBHD đồng dạng với ΔBKC

=>BH/BK=BD/BC

=>BD*BK=BH*BC=BA^2

c: BA^2=BD*BK

BA=BM

=>BM^2=BD*BK

=>ΔBMD vuông tại M

=>góc BMD=90 độ

d: SỬa đề: EA/EB*NB/NC*FC/FA

=NA/NB*NB/NC*NC/NA

=1

a: Xét ΔABC vuông tại A và ΔHBA vuông tạiH co

góc B chung

=>ΔABC đồng dạng vơi ΔHBA

=>BA/BH=BC/BA=AC/HA

=>BA^2=BH*BC

b: BI là phân giác

=>IA/IH=BA/BH=AC/HA

c: AK là phân giác của góc HAC

=>HK/KC=HA/AC=HI/IA

=>KI//AC

29 tháng 3 2023

c.ơn nhiều ạyeu

a: Xet ΔABC vuông tại A và ΔHBA vuôngtại H có

góc B chung

=>ΔABC đồng dạngvới ΔHBA

b: Xet ΔCHM vuông tại H và ΔCKB vuông tại K có

góc HCM chung

=>ΔCHM đồng dạngvới ΔCKB

=>CH/CK=CM/CB

=>CH*CB=CK*CM

c: Xét ΔBHD vuông tại H và ΔBKC vuông tại K có

goc HBD chung

=>ΔBHD đồng dạng với ΔBKC

=>BH/BK=BD/BC

=>BH/BD=BK/BC

=>ΔBHK đồng dạng vơi ΔBDC
=>góc BKH=góc BCD

9 tháng 5 2021

a, Xét △ABC và △HBA có:

∠AHB=∠BAC (=90o), ∠ABC chung

⇒△ABC∼△HBA (g.g)

⇒ \(\dfrac{AB}{BC}=\dfrac{BH}{AB}\) ⇒ AB2=BH.BC

b, Xét △EDC và △BAC có:

∠BAC=∠EDC (=90o) , ∠BCA chung

⇒ △EDC∼△BAC (g.g)

⇒ \(\dfrac{DC}{AC}=\dfrac{EC}{BC}\) ⇒ \(\dfrac{DC}{EC}=\dfrac{AC}{BC}\)

Xét △ADC và △BEC có:

\(\dfrac{DC}{EC}=\dfrac{AC}{BC}\) (C/m trên)

∠BCA chung

⇒ △ADC∼△BEC (c.g.c)

⇒ ∠ADC=∠BEC

 

 

 

 

9 tháng 5 2021

c, từ b, △ADC∼△BEC

⇒ \(\dfrac{DA}{BE}=\dfrac{AC}{BC}\) (1)

Xét △AHC và △BAC có:

∠AHC=∠BAC (=90o) , ∠BCA chung

⇒ △AHC∼△BAC (g.g)

⇒ \(\dfrac{CH}{AC}=\dfrac{AC}{BC}\) (2)

Từ (1) và (2) ⇒ \(\dfrac{CH}{AC}=\dfrac{DA}{EB}\)

2 tháng 5 2022

a. Xét tam giác ABC và tam giác HBA có:

góc A= góc H= 90o

góc B chung

=> tam giác ABC ~ tam giác HBA (g.g)

=> \(\dfrac{AB}{BC}\)=\(\dfrac{BH}{AB}\)

=> AB2= BH.BC