\(\dfrac{HB}{HC}\)...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
14 tháng 9 2021

Ta có:

\(\dfrac{HB}{HC}=\dfrac{1}{3}\Rightarrow HC=3HB\)

Áp dụng hệ thức lượng:

\(AH^2=BH.CH\Rightarrow144=BH.3BH=3BH^2\)

\(\Rightarrow BH^2=48\)

\(\Rightarrow BH=4\sqrt{3}\left(cm\right)\)

\(\Rightarrow CH=3BH=12\sqrt{3}\left(cm\right)\)

\(\Rightarrow BC=BH+CH=16\sqrt{3}\left(cm\right)\)

Bài 2: 

Ta có: \(\dfrac{HB}{HC}=\dfrac{1}{3}\)

nên HC=3HB

Ta có: \(AH^2=HB\cdot HC\)

\(\Leftrightarrow HB^2=48\)

\(\Leftrightarrow HB=4\sqrt{3}\left(cm\right)\)

\(\Leftrightarrow BC=4\cdot HB=16\sqrt{3}\left(cm\right)\)

Bài 1:

ta có: \(AB=\dfrac{1}{2}AC\)

\(\Leftrightarrow\dfrac{HB}{HC}=\dfrac{1}{4}\)

\(\Leftrightarrow HC=4HB\)

Ta có: \(AH^2=HB\cdot HC\)

\(\Leftrightarrow HB=1\left(cm\right)\)

\(\Leftrightarrow HC=4\left(cm\right)\)

hay BC=5(cm)

Xét ΔBAC vuông tại A có AH là đường cao ứng với cạnh huyền BC

nên \(\left\{{}\begin{matrix}AB^2=HB\cdot BC\\AC^2=HC\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB=\sqrt{5}\left(cm\right)\\AC=2\sqrt{5}\left(cm\right)\end{matrix}\right.\)

DD
22 tháng 6 2021

\(AB^2=BH.BC=\frac{1}{5}BC.BC\)

\(\Rightarrow BC=\sqrt{5AB^2}=10\left(cm\right)\)

31 tháng 5 2017

Hệ thức lượng trong tam giác vuông

HB/HC=1/2

nên HC=2BH

\(\left(\dfrac{AB}{AH}\right)^2=\left(\dfrac{BH\cdot BC}{\sqrt{HB\cdot HC}}\right)^2\)

\(=\dfrac{\left(BH\cdot BC\right)^2}{HB\cdot HC}=\dfrac{\left(BH\cdot3BH\right)^2}{HB\cdot2BH}=\dfrac{9BH^2}{2BH^2}=\dfrac{9}{2}\)