Cho tam giác ABC vuông tại A, đường cao AH. Vẽ đường tròn tâm A...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 3 2021

sao chụy là cô giáo mà chụy hỏi nhiều zậy

22 tháng 3 2021

Bài 1:
b)
chứng minh EDCB là tgnt => góc AED = góc ACB
từ đó, chứng minh tam giác AED đồng dạng ACB (gg)
=> DE / BC = AD / AB
tam giác ADB vuông tại A => AD / AB = cotg A = cotg 45 = 1
c)
kẻ tiếp tuyến tại Ax của (O) (Ax thuộc nửa mp bờ AC chứa B)
góc xAB = ACB = AED
=> DE // Ax
Mà Ax vuông góc với OA nên OA vuông góc với DE. (đpcm)

30 tháng 5 2021

https://thi.tuyensinh247.com/de-thi-thu-vao-lop-10-mon-toan-lan-3-phong-gddt-gia-loc-2016-c31a28113.html

15 tháng 5 2021

Hình tự vẽ nha

a) Vì A,B,D thuộc ( O; AD/2 ) 

\(\Rightarrow\widehat{ABD}=90^0\)

Vì \(EF\perp AD\Rightarrow\widehat{EFA}=90^0\)

Xét tứ giác  ABEF có góc \(\widehat{ABE}=\widehat{AFE}=90^0\)

mà 2 góc này ở vị trí đối nhau trong tứ giác ABEF

\(\Rightarrow ABEF\)nội tiếp ( dhnb )

b)  Vì A,C,D thuộc ( O; AD/2 ) 

\(\Rightarrow\widehat{ECD}=90^0\) 

Xét tứ giác EFDC có: \(\widehat{ECD}=\widehat{EFD}=90^0\)

Mà 2 góc này ở vị trí đối nhau trong tứ giác EFDC

\(\Rightarrow EFDC\)nội tiếp

\(\Rightarrow\widehat{ECF}=\widehat{EDF}\)( cùng chắn cung EF )

Lại có: \(\widehat{BCA}=\widehat{BDA}\left(=\frac{1}{2}sđ\widebat{AB}\right)\)

\(\Rightarrow\widehat{BCA}=\widehat{ACF}\)

=> AC là phân giác góc BCF 

30 tháng 6 2021

Gọi I là trung điểm của BC => BI=IC=1/2 BC (1)

Vì tam giác FBC vuông tại F; FI là đường trung trực của BC =>FI = 1/2 BC (2)

Tương tự => EI = 1/2 BC (3)

Từ (1), (2) và (3) =>EI = BI = IC = FI = 1/2 BC

=>E, B, C, F thuộc một đường tròn

DD
16 tháng 5 2021

a) \(BEFI\)nội tiếp vì \(\widehat{BEF}=\widehat{BIF}=90^o\).

b) \(\widehat{ADC}\)là góc nội tiếp chắn cung \(\widebat{AC}\).

\(\widehat{CBE}\)là góc nội tiếp chắn cung \(\widebat{CE}\).

\(\widebat{AC}=\widebat{CE}\)suy ra \(\widehat{ADC}=\widehat{CBE}\).