K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 12 2021

b: DE=4cm

23 tháng 3 2021

A B C H D E I

a/ Xét \(\Delta ABC\) có

\(\widehat{ABC}+\widehat{ACB}=90^o\) (1)

Ta có

\(\widehat{ABD}=\widehat{ABC}\) (Hai tiếp tuyến cùng xp từ 1 điểm thì đường nối điểm đó với tâm đường tròn là phân giác của góc tạo bởi 2 tiếp tuyến) (2)

Ta có 

\(\widehat{ACE}=\widehat{ACB}\)  (Hai tiếp tuyến cùng xp từ 1 điểm thì đường nối điểm đó với tâm đường tròn là phân giác của góc tạo bởi 2 tiếp tuyến) (3)

Từ (1) (2) (3) \(\Rightarrow\widehat{ABD}+\widehat{ACE}=90^o\)

\(\Rightarrow\widehat{ABD}+\widehat{ACE}+\widehat{ABC}+\widehat{ACB}=180^o\)

\(\Rightarrow\left(\widehat{ABD}+\widehat{ABC}\right)+\left(\widehat{ACE}+\widehat{ACB}\right)=\widehat{DBC}+\widehat{ECB}=180^o\) 

=> BD//CE (hai đường thẳng bị cắt bởi đường thẳng thứ 3 có hai góc trong cùng phía bù nhau thì chúng // với nhau)

Ta có 

\(AD\perp BD\Rightarrow AD\perp CE\)

\(AE\perp CE\Rightarrow AE\perp BD\)

=> AD và AE cùng vuông góc với BD => AD và AE trùng nhau (Từ 1 điểm ở ngoài 1 đường thẳng chỉ dựng được duy nhất 1 đường thẳng vuông góc với đường thẳng đã cho) => D; A; E thẳng hàng

b/

Ta có \(\Delta ABC\) vuông tại A => A thuộc đường tròn đường kính BC. Gọi I là trung điểm BC nối AI ta có

BD//CE => BDEC là hình thang

AD=AE (bán kính (O))

IB=IC

=> AI là đường trung bình của hình thang BDEC => AI//CE mà \(CE\perp DE\Rightarrow AI\perp DE\) => DE là tiếp tuyến của đường tròn đường kính BC hay DE tiếp xúc với đường tròn đường kính BC

22 tháng 8 2021

a) Theo tính chất của hai của hai tiếp tuyến cắt nhau, ta có:
^DAB=^BAH^HAC=^CAE.
Suy ra: ^DAE=^DAB+^BAH+^HAC+^CAE=2^BAH+2^HAC=2^BAC=180o.
Do ^DAE=180o nên DE là đường kính, suy ra D, E, A thẳng hàng.
b) Theo câu a:  DE là đường kính đường tròn tâm A.
Có BDDE,CEDE. Suy ra BD//CE.

Gọi O là trung điểm BC.
Vậy tứ giác BDEC là hình thang. Do O và A lần lượt là trung điểm của BC, DE nên OA là đường trung bình của hình thang BDEC.
Suy ra OADE mà OA=BC2  nên OA là bán kính của đường tròn đường kính BC.

Thế thì DE tiếp xúc với đường tròn đường kính BC.

31 tháng 12 2022

a: Xét (A) có

BD,BH là các tiếp tuyến

nên BD=BH và AB là phân giác của góc HAD(1)

Xét (A) có

CH,CE là các tiếp tuyến

nên CH=CE và AC là phân giác của góc HAE(2)

BH+CH=BC

=>BC=CE+BD

b: Từ (1), (2) suy ra góc DAE=2*90=180 độ

=>D,A,E thẳng hàng

c: Gọi M là trung điểm của BC

Xét hình thang BDEC có

M,A lần lượt là trung điểm của BC,DE

nên MA là đường trung bình

=>MA//CE//BD

=>MA vuông góc với BC

=>DE là tiếp tuyến của (M)

29 tháng 7 2021

a) Vì \(BC\bot AH\Rightarrow BC\) là tiếp tuyến của (A;AH)

Vì BD,BH là tiếp tuyến \(\Rightarrow AB\) là phân giác \(\angle DAH\Rightarrow\angle DAH=2\angle BAH\)

Vì CE,CH là tiếp tuyến \(\Rightarrow AC\) là phân giác \(\angle EAH\Rightarrow\angle EAH=2\angle CAH\)

\(\Rightarrow\angle DAH+\angle EAH=2\left(\angle BAH+\angle CAH\right)=2\angle BAC=180\)

\(\Rightarrow\angle DAE=180\Rightarrow D,A,E\) thẳng hàng

b) Vì  \(AB\) là phân giác \(\angle DAH\)

\(\Rightarrow\angle DAB=\angle BAH=90-\angle ABC=\angle ACB\)

\(\Rightarrow DA\) là tiếp tuyến của (BAC) nên DE là tiếp tuyến của (BAC)

mà \(\angle BAC=90\Rightarrow\) (BAC) là đường tròn đường kính (BC)

nên ta có đpcm

 

 

Tự vẽ hình nha !

a) Ta có AH vuông góc BC 

H thuộc (A;AH)

=> BC là tiếp tuyến của (A;AH)

Xét (A) có DB và BH là 2 tiếp tuyến cắt nhau

=> A1 = A2

Tương tự ta chứng minh được : A3 = A4

Mà A2 + A3 = 90 độ

=> A1 + A2 + A3 + A4 = 90 độ + 90 độ = 180 độ

=> DAE = 180 độ

=> D,A,E thẳng hàng

b) Gọi M là trung điểm BC

Theo tính chất tiếp tuyến ta có :

AD vuông góc BD

AE vuông góc CE

=> BD//CE

=> BDEC là hình thang

=> MA là đường trung bình của hình thang BDEC

=> MA // BD

=> MA vuông góc DE

Xét tam giác vuông ABC có : MA = MB = MC

=> M là tâm đường tròn đường kính BC với MA là bán kính

Vậy DE là tiếp tuyến đường tròn tâm M đường kính BC