Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
Theo đề bài thì DE//BC vì DE và BC đều là tiếp tuyến của đường tròn.
=>Tam giác ADE vuông tại D và tam giác AHC vuông tại H.
=>Hai tam giác vuông này có góc đối bằng nhau: DAE=CAH
Và hai cạnh bằng nhau (là bán kính đường tròn) AD=AH
===> hai tam giác vuông ADE và AHC bằng nhau
===>hai cạnh bằng nhau: AE=AC
Xét tam giác BEC có AE=AC hay gọi được gọi A là trung điểm của EC=> BA là trung tuyến của EBC kẻ từ B
Và tam giác BEC cũng có góc BAC vuông, hay còn gọi là đường cao.
Một tam giác có đường cao cũng là đường trung tuyến vậy tam giác BEC cân tại B
--------------------------------------...
b)
Vì BA vừa là trung tuyến vừa là đường cao của tam giác BEC cho nên BA chia tam giác cân BEC thành hai nửa tam giác vuông, và cũng bằng nhau: BAE=BAC
=> hai đường cao kẻ từ A tới đáy của hai tam giác vuông BAE và BAC là AH và AI phải bằng nhau.
--------------------------------------...
c)
AI= AH= bán kính đường tròn
AI vuông góc với BE theo đề bài
==> BE là tiếp tuyến của đường tròn
--------------------------------------------
a, Vì CM là tiếp tuyến của (A)
=> \(CM\perp AM\)
=> ^CMA = 90o
=> M thuộc đường tròn đường kính AC
Vì ^CHA = 90o
=> H thuộc đường tròn đường kính AC
Do đó : M và H cùng thuộc đường tròn đường kính AC
hay 4 điểm A,C,M,H cùng thuộc đường tròn đường kính AC
b, Vì AM = AH ( Bán kính)
CM = CH (tiếp tuyến)
=> AC là trung trực MH
=> \(AC\perp MH\)tại I
Xét \(\Delta\)AMC vuông tại M có MI là đường cao
\(\Rightarrow MA^2=AI.AC\)(Hệ thức lượng)
c, Vì CM , CH là tiếp tuyến của (A)
=> AC là phân giác ^HAM
=> ^HAC = ^MAC
Mà ^HAC + ^HAB = 90o
=> ^MAC + ^HAB = 90o
Ta có: ^BAD + ^BAC + ^CAM = 180o (Kề bù)
=> ^BAD + 90o + ^CAM = 180o
=> ^BAD + ^CAM = 90o
Do đó ^BAD = ^BAH (Cùng phụ ^CAM)
Xét \(\Delta\)BAD và \(\Delta\)BAH có:
AB chung
^BAD = ^BAH (cmt)
AD = AH (Bán kính (A) )
=> \(\Delta BAD=\Delta BAH\left(c.g.c\right)\)
=> ^ADB = ^AHB = 90o
\(\Rightarrow BD\perp AD\)
=> BD là tiếp tuyến của (A)
Làm đc đến đây thôi :(