K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: BC=căn 3^2+4^2=5cm

HB=AB^2/BC=1,8cm

HC=5-1,8=3,2cm

AH=3*4/5=2,4cm

b: 

1: ΔAHB vuông tại H có HE là đường cao

nên AE*EB=EH^2

2: ΔHAC vuông tại H có HF là đường cao

nên AF*FC=HF^2

=>AE*EB+AF*FC=HE^2+HF^2=EF^2=AH^2

Bài 2: 

a: Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHB vuông tại H có HE là đường cao ứng với cạnh huyền AB, ta được:

\(AE\cdot EB=HE^2\)

b: Xét tứ giác AEHF có

\(\widehat{FAE}=\widehat{AFH}=\widehat{AEH}=90^0\)

Do đó: AEHF là hình chữ nhật

Suy ra: FE=AH và \(\widehat{FHE}=90^0\)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHC vuông tại H có HF là đường cao ứng với cạnh huyền AC, ta được:

\(AF\cdot FC=FH^2\)

Áp dụng định lí Pytago vào ΔFHE vuông tại H, ta được:

\(HF^2+HE^2=FE^2\)

\(\Leftrightarrow AH^2=AE\cdot EB+AF\cdot FC\)

19 tháng 8 2021

1) Áp dụng hệ thức về cạnh và đường cao trong tam giác vuông, ta được:

\(BC=\sqrt{AB^2+AC^2}=\sqrt{9+16}=\sqrt{25}=5\)(cm)

BH \(=\dfrac{AB^2}{BC}=\dfrac{9}{5}\)(cm)

\(CH=\dfrac{AC^2}{BC}=\dfrac{16}{5}\left(cm\right)\)

\(AH=\dfrac{AB.AC}{BC}=\dfrac{12}{5}\left(cm\right)\)

2) a) Áp dụng hệ thức về cạnh và đường cao trong tam giác vuông, ta được điều phải chứng minh.

b)Chứng minh tương tự câu a), ta được:

AF.FC=HF^2

Lại có:

Tứ giác AFHE có 3 góc vuông nên từ giác AFHE là hình chữ nhật.

Suy ra, HF = AE

Suy ra, AF.FC=AE^2

Mà AE.EB=HE^2

Nên AF.FC+AE.EB=AE^2+HE^2=AH^2(đpcm)

3) Áp dụng hệ thức về cạnh và góc trong tam giác, ta được:

\(BE=\cos B.BH=\cos B.\left(\cos B.AB\right)=\cos^2B.AB=\cos^2B.\left(\cos B.BC\right)=\cos^3.BC\left(đpcm\right)\)

Qua A kẻ đường thẳng vuông góc với EF tại M, cắt BC tại N.Gọi I là giao của AH và EF.

CMR: góc IAE = góc IEA.

Có tam giác MAE vuông tại M => góc MAE + góc MEA= 90 độ   Hay góc NAB + góc IEA = 90 độ

Có tam giác ABH vuông tại H => góc ABH + góc HAE= 90 độ   Hay góc NBA + góc IAE = 90 độ

                                                                                                      => góc NAB= góc NBA (phụ với hai góc bằng nhau)

                                                                                                      => tam giác NAB cân tại N

                                                                                                      => NA=NB

CM: NA=NC

=> NB=NC

=> N là trung điểm của BC

=> N trùng với I, M trùng với K.

mà AM vuông góc với EF

=> AK vuông góc với EF

Xét tam giác AEF vuông tại A có AK là đường cao

=> 1/AK2 = 1/AE2 + 1/AF2

Cm AE=HF, EH=AF

=> đpcm

26 tháng 9 2018

A B C H E F O

a) \(\Delta\)ABC vuông tại A có trung tuyến AO nên ^OAC = ^OCA. Do ^OCA = ^BAH (Cùng phụ ^HAC)

Nên ^OAC = ^BAH = ^ AEF (Do tứ giác AEHF là hcn)

Mà ^AEF + ^AFE = 900 => ^OAC + ^AFE = 900 => OA vuông góc EF (đpcm).

b) Biến đổi tương đương:

\(BE\sqrt{CH}+CF\sqrt{BH}=AH\sqrt{BC}\)

\(\Leftrightarrow BE\sqrt{BC.CH}+CF\sqrt{BC.BH}=AB.BC\)(Nhân mỗi vế với \(\sqrt{BC}\))

\(\Leftrightarrow BE\sqrt{AC^2}+CF\sqrt{AB^2}=AB.BC\) (Hệ thức lương)

\(\Leftrightarrow BE.AC+CF.AB=AB.BC\)

\(\Leftrightarrow BH.AH+CH.AH=AB.BC\)(Vì \(\Delta\)EBH ~ \(\Delta\)HAC; \(\Delta\)FHC ~ \(\Delta\)HBA)

\(\Leftrightarrow AH\left(BH+CH\right)=AB.BC\)

\(\Leftrightarrow AH.BC=AB.AC\) (luôn đúng theo hệ thức lượng)

Vậy có ĐPCM.

4 tháng 10 2018

bạn tự vẽ hình nhá!

                                                        giải

a) ÁP DỤNG ĐỊNH LÝ PI-TA GO-VÀ \(\Delta\)VUÔNG ABC TA CÓ:

        \(AB^2\)\(+\)\(AC^2\)\(=\)\(BC^2\)

\(\Rightarrow\)\(3^2\)\(+\)\(4^2\)\(=\)\(BC^2\)

\(\Rightarrow9+16=BC^2\)

\(\Rightarrow25=BC^2\)

\(\Rightarrow5=BC\)

  ÁP DỤNG HỆ THỨC 3 VÀO \(\Delta\)ABC TA CÓ:

 AB.AC=BC.CH\(\Rightarrow\)AH=\(\frac{AB.AC}{BC}\)=\(\frac{3.4}{5}\)=2,5

 ÁP DỤNG HỆ THỨC LƯỢNG TRONG TAM GIÁC TA CÓ:

\(AB^2=BC.BH\)\(\Rightarrow BH=\frac{AB^2}{BC}\)=\(\frac{3^2}{5}=1,8\)

\(AC^2=BC\times CH\Rightarrow HC=\frac{AC^2}{BC}=\frac{4^2}{5}=3,2\)