K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔAHC có 

E là trung điểm của AC

EF//AH

Do đó: F là trung điểm của CH

Xét ΔAHC có 

E là trung điểm của AC

F là trung điểm của CH

Do đó: EF là đường trung bình của ΔAHC

Suy ra: \(EF=\dfrac{AH}{2}\left(1\right)\)

Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền CB

nên \(AH^2=HB\cdot HC\)

hay \(AH=\sqrt{HB\cdot HC}\left(2\right)\)

Từ (1) và (2) suy ra \(EF=\dfrac{\sqrt{HB\cdot HC}}{2}\)

hay \(EF^2=\dfrac{HB\cdot HC}{4}\)

 

27 tháng 7 2021

a) Xét \(\Delta CAH:\) ta có: E là trung điểm AC và \(EF\parallel AH(\bot BC)\)

\(\Rightarrow F\) là trung điểm CH \(\Rightarrow EF\) là đường trung bình \(\Rightarrow EF=\dfrac{1}{2}AH\)

tam giác ABC vuông tại A có đường cao AH nên áp dụng hệ thức lượng

\(\Rightarrow AH^2=BH.CH\)

Ta có: \(EF^2=\left(\dfrac{1}{2}AH\right)^2=\dfrac{1}{4}AH^2=\dfrac{1}{4}.BH.HC\)

b) Ta có: \(\angle BAE+\angle BFE=90+90=180\Rightarrow ABFE\) nội tiếp

\(\Rightarrow\angle FBE=\angle FAE\)

Xét \(\Delta CBE\) và \(\Delta CAF:\) Ta có: \(\left\{{}\begin{matrix}\angle CBE=\angle CAF\\\angle BCAchung\end{matrix}\right.\)

\(\Rightarrow\Delta CBE\sim\Delta CAF\left(g-g\right)\Rightarrow\dfrac{AF}{BE}=\dfrac{AC}{BC}=cosC\Rightarrow AF=cosC.BE\)

undefined

 

31 tháng 10 2021

b: Xét ΔCFE vuông tại F và ΔCAB vuông tại A có 

\(\widehat{C}\)chung

Do đó: ΔCFE\(\sim\)ΔCAB

Suy ra: \(\dfrac{CF}{CA}=\dfrac{CE}{CB}\)

\(\Leftrightarrow CF\cdot CB=CE\cdot CA\)

\(\Leftrightarrow CF\cdot CB=CA\cdot\dfrac{1}{2}AC\)

\(\Leftrightarrow AC^2=2\cdot CF\cdot CB\)

20 tháng 6 2021

a) Ta có: \(AB.sinC+AC.cosC=AB.\dfrac{AB}{BC}+AC.\dfrac{AC}{BC}=\dfrac{AB^2}{BC}+\dfrac{AC^2}{BC}\)

\(=\dfrac{AB^2+AC^2}{BC}=\dfrac{BC^2}{BC}=BC\)

b) Vì \(\angle HEA=\angle HFA=\angle EAF=90\Rightarrow AEHF\) nội tiếp

\(\Rightarrow EF=AH\Rightarrow EF.BC.AE=AH.BC.AE\)

\(=AB.AC.AE\left(AB.AC=AH.BC=2S_{ABC}\right)=AE.AB.AC\)

\(=AH^2.AC=AF.AC.AC=AF.AC^2\)

c) Ta có: \(AH.BC.BE.CF=AB.AC.BE.CF=BE.BA.CF.CA\)

\(=BH^2.CH^2=\left(BH.CH\right)^2=\left(AH^2\right)^2=AH^4\)

\(\Rightarrow AH^3=BC.BE.CF\)

Vì AEHF là hình chữ nhật \(\Rightarrow\left\{{}\begin{matrix}AE=HF\\AF=EH\end{matrix}\right.\)

Vì \(BE\parallel HF\) \(\Rightarrow\angle CHF=\angle CBA\)

Xét \(\Delta BEH\) và \(\Delta HFC:\) Ta có: \(\left\{{}\begin{matrix}\angle BEH=\angle HFC=90\\\angle EBH=\angle FHC\end{matrix}\right.\)

\(\Rightarrow\Delta BEH\sim\Delta HFC\left(g-g\right)\Rightarrow\dfrac{BE}{EH}=\dfrac{HF}{FC}\Rightarrow\dfrac{BE}{AF}=\dfrac{AE}{CF}\)

\(\Rightarrow BE.CF=AE.AF\Rightarrow BC.AE.AF=BC.BE.CF=AH^3\)

15 tháng 9 2020

Câu b: Xet tg vuông AEH và tg vuông ABC có

^BAH = ^ACB (cùng phụ với ^ABC)

=> Tg AEH đồng dạng với tg ABC \(\Rightarrow\frac{AE}{AC}=\frac{EH}{AB}\) mà EH=AF (cạnh đối HCN)

\(\Rightarrow\frac{AE}{AC}=\frac{AF}{AB}\Rightarrow AE.AB=AF.AC\)

Câu c: 

Ta có AM=BC/2==BM=CM (trong tg vuông trung tuyến thuộc cạnh huyền bằng nửa cạnh huyền)

=> tg AMC cân tại M => ^MAC = ^ACB mà  ^BAH = ^ACB (cmt)  => ^MAC = ^BAH (1)

Ta có ^AHE = ^ABC (cùng phụ với ^BAH) mà ^AHE = ^HAC (góc so le trong) => ^ABC = ^HAC (2)

Gọi giao của AH với EF là O xét tg AOF  có

AH=EF (hai đường chéo HCN = nhau) 

O là trung điểm của AH vào EF 

=> OA=OF => tg AOF cân tại O => ^HAC = ^AFE (3)

Từ (2) và (3) => ^AFE = ^ABC (4)

Mà ^ABC + ^ACB = 90 (5)

Từ (1) (4) (5) => ^MAC + ^AFE = 90

Xét tg AKF có ^AKF = 180 - (^MAC + ^AFE) = 180-90=90 => AM vuông góc EF tại K