K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 1 2017

link nè bạn http://lazi.vn/edu/exercise/cho-tam-giac-nhon-abc-ke-duong-cao-ah-tu-h-ke-he-vong-goc-ab-e-thuoc-ab-ke-f-vuong-goc-voi-ac-f-thuoc-ac

k mk nhé thanks

22 tháng 1 2018

Này người lạ ơi

.

. đừng nhìn đi đâu

- đúng rồi

- là bạn đó

- cho mình xin 1 ( t í c h)  nhé :)

- còn việc kết bạn cứ để mik lo

13 tháng 1 2020

a) Xét ΔDAN,ΔHANΔDAN,ΔHAN có :

HN=ND(gt)HN=ND(gt)

ANDˆ=ANHˆ(=90O)AND^=ANH^(=90O)

AN:ChungAN:Chung

=> ΔDAN=ΔHAN(c.g.c)ΔDAN=ΔHAN(c.g.c)

b) Xét ΔAMH,ΔAMEΔAMH,ΔAME có :

HM=ME(gt)HM=ME(gt)

AMHˆ=AMEˆ(=90o)AMH^=AME^(=90o)

AM:ChungAM:Chung

=> ΔAMH=ΔAME(c.g.c)ΔAMH=ΔAME(c.g.c)

Xét tứ giác ANHM có :

Nˆ=90O(HN⊥AB)N^=90O(HN⊥AB)

Aˆ=90O(ΔABC⊥A)A^=90O(ΔABC⊥A)

Mˆ=90O(HM⊥AC)M^=90O(HM⊥AC)

=> Tứ giác ANHM là hình chữ nhật

=> {NH=AMNA=HM{NH=AMNA=HM (tính chất hình chữ nhật)

Ta dễ dàng chứng minh được : ΔANH=ΔAMH(c.c.c)ΔANH=ΔAMH(c.c.c)

Mà : {ΔAND=ΔANHΔAHM=ΔAEM(cmt){ΔAND=ΔANHΔAHM=ΔAEM(cmt)

Suy ra : ΔAND=ΔAMEΔAND=ΔAME

=> DA=AEDA=AE(2 cạnh tương ứng) (*)

c) Từ (*) => A là trung điểm của DE

Do đó : D,A,E thẳng hàng (đpcm)

a: Xét ΔAHD có 

AN là đường cao

AN là đường trung tuyến

Do đó:ΔAHD cân tại A

mà AB là đường trung tuyến

nên AB là tia phân giác của góc HAD(1)

Xét ΔAHE có 

AM là đường cao

AM là đường trung tuyến

Do đó: ΔAHE cân tại A

mà AC là đường cao

nên AC là tia phân giác của góc HAE(2)

Từ (1) và (2) suy ra \(\widehat{DAE}=2\cdot\left(\widehat{BAH}+\widehat{CAH}\right)=2\cdot90^0=180^0\)

hay D,A,E thẳng hàng

b: Xét ΔHED có

M là trung điểm của HE

N là trung điểm của HD

Do đó: MN là đường trung bình

=>MN//ED

d: Xét ΔDHE có 

HA là đường trung tuyến

HA=DE/2

Do đó:ΔDHE vuông tại H

Bài 1:Cho tam giác ABC cân tại A. Trên tia đối của tia BC lấy điểm M; trên tia đối của tia CBlấy điểm N sao cho MB = CN. Từ B hạBE AM ( E AM) ⊥ , từ C hạCF AN ( F AN) ⊥ Chứng minh rằng:a/ Tam giác AMN cân b/ BE = CF c/  BME = CNFBài 2: Cho tam giác ABC cân tại A, đường thẳng vuông góc với AB tại B cắt đườngthẳng vuông góc với AC tại C ở D. Chứng minh rằng AD là tia phân giác của góc BACBài 3:...
Đọc tiếp

Bài 1:
Cho tam giác ABC cân tại A. Trên tia đối của tia BC lấy điểm M; trên tia đối của tia CB
lấy điểm N sao cho MB = CN. Từ B hạ

BE AM ( E AM) ⊥ 

, từ C hạ

CF AN ( F AN) ⊥ 

Chứng minh rằng:
a/ Tam giác AMN cân b/ BE = CF c/

  BME = CNF
Bài 2: Cho tam giác ABC cân tại A, đường thẳng vuông góc với AB tại B cắt đường
thẳng vuông góc với AC tại C ở D. Chứng minh rằng AD là tia phân giác của góc BAC
Bài 3: Cho tam giác ABC vuông cân tại A. Qua A kẻ đường thẳng d ( d không cát đoạn
thẳng BC). Từ B hạ

BE d ( E d) ⊥ 

, từ C hạ

CF d ( F d) ⊥ 

. So sánh: BE + CF và FE?
Bài 4: Cho tam giác ABC vuông cân tại A, kẻ AH vuông góc với BC ( H thuộc BC). Từ
H kẻ
HM AC ⊥

và trên tia HM lấy điểm E sao cho HM = EM. Kẻ

HN AB ⊥

và trên tia

HN lấy điểm D sao cho NH = ND. Chứng minh rằng:
a/ Ba điểm D; A; E thẳng hàng
b/ BD // CE
c/ BC = BD + CE
Bài 5: Cho tam giác ABC vuông cân tại A, D là trung điểm của AC. Từ A kẻ đường
thẳng vuông góc với BD, cắt BC tại E. Chứng minh rằng: AE = 2DE.

0
15 tháng 1 2020

H M N D E A B C 1 1 1 2

Ta có : HN vuông góc với AB (gt)

            AB vuông góc với AC (gt)

Do đó HN//AC ( quan hệ giữa tính vuông góc với song song )

=> Góc H1 = góc A2   ( 2 góc so le trong )

Xét tam giác HAN vuông tại N và tam giác HAM vuông tại M có:

HA là cạnh chung

Góc H1 = góc A2  ( cmt )

Do đó tam giác HAN = tam giác AHM ( cạnh huyền,góc nhọn )

=> AN=HM ( 2 cạnh tương ứng )

Mà HM= ME (gt)

=> AN = ME

Xét tam giác NAM vuông tại A và tam AME vuông tại M có :

AM là cạnh chung

AN=ME (cmt)

Do đó tam giác NAM = EMA ( 2 cạnh góc vuông )

=> Góc M1 = góc A1  ( 2 góc tương ứng )

Mà hai góc này ở vị trị so le trong do AM cắt MN, DE

Do đó MN//DE ( dấu hiệu nhận biết hai đường thẳng song song )

Xong ! 

15 tháng 1 2020

Xét tứ giác ANHM có \(\widehat{NAM}=\widehat{ANH}=\widehat{AMH}=90^o\)

\(\Rightarrow\)ANHM là hình chữ nhật \(\Rightarrow NH=AM\)

Xét \(\Delta NHM\)và \(\Delta AME\)có: 

+) \(NH=AM\)

+) \(\widehat{NHM}=\widehat{AME}=90^o\)

+) \(MH=ME\)

\(\Rightarrow\Delta NHM=\Delta AME\left(c-g-c\right)\)\(\Rightarrow\widehat{NMH}=\widehat{MEA}\)

mà 2 góc này ở vị trí so le trong \(\Rightarrow NM//AE\)(1)

Ta có: AB là đường trung trực của HD \(\Rightarrow\Delta AHD\)cân tại A

mà AN là đường cao \(\Rightarrow\)AN là phân giác \(\widehat{DAH}\)

Tương tự ta có: AM là phân giác \(\widehat{HAE}\)

mà \(AN\perp AM\)\(\Rightarrow\)\(\widehat{DAH}+\widehat{HAE}=\widehat{DAE}=180^o\)( Phân giác của 2 góc kề bù vuông góc với nhau )

\(\Rightarrow\)D,A,E thẳng hàng (2)

Từ (1) và (2) \(\Rightarrow MN//DE\)

14 tháng 2 2016

moi hok lop 6

Xét ΔAHD có

AB vừa là đường cao, vừalà trung tuyến

nên ΔAHD cân tại A

=>AB là phân giác của góc HAD(1)

Xét ΔAHB và ΔADB có

AH=AD

góc HAB=góc DAB

AB chung

=>ΔAHB=ΔADB

=>góc ADB=90 độ

=>BD vuông góc DA

Xét ΔAHE có

AC vừa là đường cao, vừa là trung tuyến

nên ΔAHE cân tại A

=>AC là phân giác của góc HAE(2)

Xét ΔAHC và ΔAEC có

AH=AE

góc HAC=góc EAC

AC chung

=>ΔAHC=ΔAEC

=>góc AEC=90 độ

Từ (1), (2) suy ra góc DAE=2*90=180 độ

=>D,A,E thẳng hàng

=>BD//CE

a: Ta có: H và D đối xứng với nhau qua AB

nên AH=AD; BH=BD

=>ΔHAD cân tại A

=>AB là phân giác của góc HAD(1)

Ta có H và E đối xứngvới nhau qua AC

nên AH=AE; CH=CE

=>ΔAHE cân tại A

=>AC là phân giác của góc HAE(2)

Từ (1) và (2) suy ra góc DAE=2xgóc BAC=180 độ

=>D,A,E thẳng hàng

b: Xét ΔAHB và ΔADB có

AH=AD

BH=BD

AB chung

Do đó: ΔAHB=ΔADB

Suy ra: góc ADB=90 độ

=>BD vuông góc với DE(3)

Xét ΔAHC và ΔAEC có

AH=AE

HC=EC

AC chung

Do đó: ΔAHC=ΔAEC

Suy ra: góc AEC=90 độ

=>CE vuông góc với ED(4)

Từ (3) và (4) suy ra BDEC là hình thang vuông

c: ED=AE+AD
=AH+AH=2AH

d: Xét ΔDHE có 

HA là đường trung tuyến

HA=DE/2

Do đó: ΔDHE vuông tại H