Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C H K D
Ta có
\(BC=4.BH\Rightarrow BH=\frac{BC}{4}\) (1)
\(S_{BHD}=\frac{1}{2}.BD.BH.sin\widehat{KBC}\) (*)
Xét tg vuông ABC có
\(AB^2=BH.BC\) (Trong 1 tg vuông bình phương 1 cạnh gó vuông bằng tích của hình chiếu của nó trên cạnh huyền với cạnh huyền)
\(\Rightarrow AB^2=\frac{BC}{4}.BC=\frac{BC^2}{4}\Rightarrow AB=\frac{BC}{2}\)
Xét tg vuông ABD có
\(\cos\widehat{ABD}=\frac{BD}{AB}\Rightarrow BD=AB.\cos\widehat{ABD}=\frac{BC.\cos\widehat{ABD}}{2}\) (2)
Thay (1) và (2) vào (*)
\(\Rightarrow S_{BHD}=\frac{1}{2}.\frac{BC.\cos\widehat{ABD}}{2}.\frac{BC}{4}.\sin\widehat{KBC}\) (**)
Xét tg BKC có
\(S_{BKC}=\frac{1}{2}.BK.BC.\sin\widehat{KBC\Rightarrow BC.\sin\widehat{KBC}=\frac{2.S_{BKC}}{BK}}\) (***)
Xét tg vuông ABK có
\(AB^2=BD.BK\Rightarrow BK=\frac{AB^2}{BD}=\frac{\frac{BC^2}{4}}{\frac{BC.\cos\widehat{ABD}}{2}}=\frac{BC}{2.\cos\widehat{ABD}}\) Thay giá trị của BK vào(***) ta có
\(BC.\sin\widehat{KBC}=\frac{2.S_{BKC}}{\frac{BC}{2.\cos\widehat{ABD}}}=\frac{4.S_{BKC}.\cos\widehat{ABD}}{BC}\) (3)
Thay (3) vào (**) ta có
\(\Rightarrow S_{BHD}=\frac{1}{2}.\frac{BC.\cos\widehat{ABD}}{2}.\frac{4.S_{BKC}.\cos\widehat{ABD}}{4.BC}=\frac{1}{4}.S_{BKC}.\cos^2\widehat{ABD}\) (dpcm)
a: \(AB=\sqrt{2\cdot8}=4\left(cm\right)\)
\(AC=\sqrt{6\cdot8}=4\sqrt{3}\left(cm\right)\)
\(AH=\dfrac{4\cdot4\sqrt{3}}{8}=2\sqrt{3}\left(cm\right)\)
b: BD*BK=BA^2
BH*BC=BA^2
DO đó BD*BK=BH*BC
a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow AC^2=BC^2-AB^2=8^2-4^2=48\)
hay \(AC=4\sqrt{3}cm\)
Xét ΔABC vuông tại A có
\(\sin\widehat{C}=\frac{AB}{BC}=\frac{4}{8}=\frac{1}{2}\)
Vậy: \(AC=4\sqrt{3}cm\); \(\sin\widehat{C}=\frac{1}{2}\)
b) Xét ΔABC vuông tại A có
\(\sin\widehat{C}=\frac{1}{2}\)(cmt)
hay \(\widehat{C}=30^0\)
Ta có: ΔABC vuông tại A(gt)
⇒\(\widehat{B}+\widehat{C}=90^0\)(hai góc nhọn phụ nhau)
\(\Rightarrow\widehat{B}+30^0=90^0\)
hay \(\widehat{B}=60^0\)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(AH\cdot BC=AB\cdot AC\)
\(\Leftrightarrow AH\cdot8=4\cdot4\sqrt{3}=16\sqrt{3}\)
hay \(AH=2\sqrt{3}cm\)
Áp dụng định lí Pytago vào ΔABH vuông tại H, ta được:
\(AH^2+HB^2=AB^2\)
\(\Leftrightarrow\left(2\sqrt{3}\right)^2+HB^2=4^2\)
\(\Leftrightarrow HB^2=4^2-\left(2\sqrt{3}\right)^2=16-12=4\)
hay BH=2cm
Vậy: \(\widehat{C}=30^0\); \(\widehat{B}=60^0\); \(AH=2\sqrt{3}cm\); BH=2cm
Đề bài của em bị sai
Hai tam giác BHD và BKC đồng dạng do chung góc \(\widehat{KBC}\) và \(\widehat{BDH}=\widehat{BCK}\) (cùng bằng \(\widehat{BAH}\))
Do đó tỉ số đồng dạng 2 tam giác là \(k=\dfrac{BD}{BC}\)
\(\Rightarrow\dfrac{S_{BDH}}{S_{BKC}}=k^2=\dfrac{BD^2}{BC^2}\)
Nếu đề bài đúng thì đồng nghĩa ta phải chứng minh:
\(\dfrac{BD^2}{BC^2}=\dfrac{cos^2\widehat{ABD}}{4}=\dfrac{\left(\dfrac{BD}{AB}\right)^2}{4}=\dfrac{BD^2}{4AB^2}\)
\(\Rightarrow BC^2=4AB^2\) nhưng điều này rõ ràng ko đúng (vì đề bài ko hề cho BC=2AB)
b: Xét ΔABK vuông tại A có AD là đường cao ứng với cạnh huyền BK
nên \(BD\cdot BK=AB^2\left(1\right)\)
Xét ΔBAC vuông tại A có AH là đường cao ứng với cạnh huyền BC
nên \(BH\cdot BC=AB^2\left(2\right)\)
Từ (1) và (2) suy ra \(BD\cdot BK=BH\cdot BC\)
Câu a,b bạn tk ở đây, mình làm r
https://hoc24.vn/cau-hoi/cho-tam-giac-abc-vuong-tai-aduong-cao-ah-biet-bc8cmbh2cma-tinh-abacahb-tren-canh-ac-lay-diem-k-k-khac-acgoi-d-la-hinh-chieu-cua-a-tren.1961568340497
\(c,\) Áp dụng công thức tính diện tích hình tam giác bằng nửa tích hai cạnh nhân sin góc xen giữa
\(S_{BHD}=\dfrac{1}{2}BH\cdot BD\cdot\sin\widehat{DBH}\\ S_{BKC}=\dfrac{1}{2}BK\cdot BC\cdot\sin\widehat{KBC}\)Mà \(\widehat{DBH}\equiv\widehat{KBC}\)\(\Rightarrow\dfrac{S_{BHD}}{S_{BKC}}=\dfrac{BH\cdot BD}{BK\cdot BC}=\dfrac{2BD}{8BK}=\dfrac{BD}{4BK}=\dfrac{BD^2}{4BK\cdot BD}\\ =\dfrac{1}{4}\dfrac{BD^2}{AB^2}\left(hệ.thức.lượng\right)=\dfrac{1}{4}\cdot\cos^2\widehat{ABD}\\ \Rightarrow S_{BHD}=\dfrac{1}{4}S_{BKC}\cdot\cos^2\widehat{ABD}\)\(a,\) Áp dụng HTL tam giác:
\(\left\{{}\begin{matrix}AB^2=BH\cdot BC=16\\AC^2=BC\cdot CH=8\left(8-2\right)=48\\AH^2=BH\cdot CH=2\left(8-2\right)=12\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}AB=4\left(cm\right)\\AC=4\sqrt{3}\left(cm\right)\\AH=2\sqrt{3}\left(cm\right)\end{matrix}\right.\)
\(b,\widehat{ADB}=\widehat{AHB}\left(=90^0\right)\Rightarrow ADHB.nội.tiếp\\ \Rightarrow\widehat{DHA}=\widehat{DBA}\left(cùng.chắn.AD\right)\left(1\right)\) \(\left\{{}\begin{matrix}\widehat{CKB}=\widehat{KAB}+\widehat{ABD}\left(góc.ngoài\right)=90^0+\widehat{ABD}\\\widehat{DHB}=\widehat{DHA}+\widehat{AHB}=\widehat{DHA}+90^0\\\widehat{ABD}=\widehat{DHA}\left(cm.trên\right)\end{matrix}\right.\\ \Rightarrow\widehat{CKB}=\widehat{DHB}\\ \left\{{}\begin{matrix}\widehat{CKB}=\widehat{DHB}\\\widehat{CBK}.chung\end{matrix}\right.\Rightarrow\Delta DHB\sim\Delta CKB\left(g.g\right)\\ \Rightarrow\dfrac{BD}{BC}=\dfrac{BH}{BK}\Rightarrow BD\cdot BK=BH\cdot BC\)
chứng minh rằng: SBHD = \(\frac{1}{4}\)SBKC.cos2ABD