\(2\sqrt{2}\) ...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 7 2017

theo hệ thức lượng trong tam giác vuông ta có : 

 \(AC^2=HC.BC\)

\(AB^2=HB.BC\)   chia các vế vs nhau ta được :  \(\frac{AC^2}{AB^2}=\frac{HC}{HB}\)=>  \(\frac{HC}{HB}=\left(\sqrt{2}\right)^2=2\)

Ta có : HC = HB + 2 =>\(\frac{HB+2}{HB}=2\)=> HB = 2

=> HC = 2 + 2 = 4 => BC = HB + HC = 2 + 4 = 6

\(AB^2=2.6=12\)=> AB = \(\sqrt{12}=2\sqrt{3}\)

\(\frac{AC}{AB}=\sqrt{2}\)=> \(\frac{AC}{2\sqrt{3}}=\sqrt{2}\)=> AC = \(2\sqrt{6}\)

13 tháng 7 2017

thank bạn nha

12 tháng 6 2016

ban tu ve hinh nha!

áp dụng định lý pi-ta-go vào tam giác AHB  vuông tại H có: BH^2+AH^2=AB^2. suy ra:AH^2=AB^2-BH^2     (1)

áp dụng định lý pi-ta-go vào tam giác AHC vuông tại H có:AH^2+HC^2=AC^2.Suy ra:AH^2=AC^2-HC^2        (2)

Từ (1) và (2) suy ra: AB^2-BH^2=AC^2-HC^2 suy ra:HC^2-HB^2=AC^2-AB^2 (dpcm)

16 tháng 9 2020

A C B D O M K H

a;b dễ chắc tự làm đc

c, lấy K sao cho M là trđ của OK

mà có M là trđ của AC (gt) 

=> COAK là hình bình hành (dh)

=> CK // OA hay CK // OH và AK // CO hay AK // OD

xét tg KCB có CK // OH => \(\frac{BH}{HC}=\frac{BO}{OK}\)  (talet)

xét tg KAB có AK / OD => \(\frac{BO}{OK}=\frac{BD}{DA}\) (talet)

=> \(\frac{BH}{HC}=\frac{BD}{AD}\) mà có \(\frac{BD}{AD}=\frac{BC}{AC}\) do CD là pg của tg ABC (gt)

=> \(\frac{BC}{AC}=\frac{HB}{HC}\Rightarrow BC\cdot HC=HB\cdot AC\)

mà có \(BC\cdot HC=AC^2\) do tg ABC v tại A và AH _|_ BC (gt)

=> AC^2 = HB*AC

=> AC = HB (chia 2 vế cho ac vì ac > 0)

17 tháng 9 2020

Theo định lý Ce-va ta có: \(\frac{BH}{HC}.\frac{MC}{MA}.\frac{DA}{DB}=1\)

Mà MA = MC (do BM là đường trung tuyến của \(\Delta\)ABC) nên \(\frac{BH}{HC}.\frac{DA}{DB}=1\)(1)

CD là phân giác nên theo tính chất đường phân giác trong tam giác, ta có: \(\frac{DA}{DB}=\frac{AC}{BC}\)(2)

Từ (1) và (2) suy ra \(\frac{BH}{HC}.\frac{AC}{BC}=1\Rightarrow BH.AC=HC.BC\)(3)

Dễ thấy \(\Delta ABC~\Delta HAC\left(g.g\right)\Rightarrow\frac{HC}{AC}=\frac{AC}{BC}\Rightarrow AC^2=BH.HC\)(4)

Từ (3) và (4) suy ra \(AC^2=BH.AC\Rightarrow BH=AC\left(đpcm\right)\)