K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có: \(AB^2=BH\cdot BC\)

\(\Leftrightarrow BH^2+16HB-225=0\)

hay BH=9(cm)

\(\Leftrightarrow AC=20cm\)

hay AH=12cm

Ta có: \(AB^2=HB\cdot HC\)

\(\Leftrightarrow HB\left(HB+16\right)=225\)

\(\Leftrightarrow HB^2+16HB-225=0\)

\(\Leftrightarrow HB=9\left(cm\right)\)

\(\Leftrightarrow AC=\sqrt{HC\cdot BC}=\sqrt{16\cdot25}=20\left(cm\right)\)

\(\Leftrightarrow AH=12\left(cm\right)\)

1: AB/AC=5/7

=>HB/HC=(AB/AC)^2=25/49

=>HB/25=HC/49=k

=>HB=25k; HC=49k

ΔABC vuông tại A có AH là đường cao

nên AH^2=HB*HC

=>1225k^2=15^2=225

=>k^2=9/49

=>k=3/7

=>HB=75/7cm; HC=21(cm)

 

14 tháng 9 2018

Đặt BC=x \(\Rightarrow\)BH=x-16

\(\Rightarrow\)AB2=x(x-16) \(\Leftrightarrow\)152=x(x-16) \(\Leftrightarrow\)x=25

\(\Rightarrow\)BC=25(cm),BH=25-16=9(cm)

AC=\(\sqrt{BC^2-AB^2}\)=20(cm)

AH=\(\sqrt{BH.HC}\)=12(cm

NV
20 tháng 8 2021

\(\dfrac{AB}{AC}=\dfrac{5}{7}\Rightarrow AB=\dfrac{5AC}{7}\)

Áp dụng hệ thức lượng:

\(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\)

\(\Leftrightarrow\dfrac{1}{15^2}=\dfrac{1}{\left(\dfrac{5}{7}AC\right)^2}+\dfrac{1}{AC^2}\)

\(\Leftrightarrow AC^2=666\Rightarrow AC=3\sqrt{74}\)

\(\Rightarrow AB=\dfrac{15\sqrt{74}}{7}\)

\(\Rightarrow BC=\sqrt{AB^2+AC^2}=\dfrac{222}{7}\)

Áp dụng hệ thức lượng:

\(AB^2=BH.BC\Rightarrow BH=\dfrac{AB^2}{BC}=21\left(cm\right)\)

\(CH=BC-BH=\dfrac{75}{7}\left(cm\right)\)

1) 

a) Xét ΔABC có 

\(BC^2=AC^2+AB^2\left(7.5^2=4.5^2+6^2\right)\)

nên ΔABC vuông tại A(Định lí Pytago đảo)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A, ta được:

\(AB\cdot AC=AH\cdot BC\)

\(\Leftrightarrow AH=\dfrac{AB\cdot AC}{BC}=\dfrac{4.5\cdot6}{7.5}=\dfrac{27}{7.5}=3.6\left(cm\right)\)

Vậy: AH=3,6cm

b) Áp dụng định lí Pytago vào ΔACH vuông tại H, ta được:

\(AC^2=AH^2+CH^2\)

\(\Leftrightarrow CH^2=4.5^2-3.6^2=7.29\)

hay CH=2,7(cm)

Ta có: BH+CH=BC(H nằm giữa B và C)

nên BH=BC-CH=7,5-2,7=4,8(cm)

Vậy: BH=4,8cm; CH=2,7cm

1 tháng 7 2021

1.a)Ta có:7,52=4,52+62 nên theo định lí Py-ta-go 

=>\(\Delta ABC\) vuông tại A

Ta có: AB.AC=BC.AH

=> \(AH=\dfrac{AC.AB}{BC}=\dfrac{4,5.6}{7,5}=3.6\)  (cm)

6 tháng 3 2022

undefined

Bài 1: 

AH=12cm

AC=20cm

\(\widehat{ABC}=37^0\)

Ta có: \(HC-HB=6\)

\(\Leftrightarrow HC=HB+6\)

Ta có: \(\dfrac{AB}{AC}=\dfrac{1}{2}\)

\(\Leftrightarrow\dfrac{HB}{HC}=\dfrac{1}{4}\)

\(\Leftrightarrow HC=4HB\)

\(\Leftrightarrow HB=2\left(cm\right)\)

\(\Leftrightarrow HC=8\left(cm\right)\)

\(\Leftrightarrow BC=10\left(cm\right)\)

\(\Leftrightarrow\left\{{}\begin{matrix}AB=\sqrt{2\cdot10}=2\sqrt{5}\left(cm\right)\\AC=\sqrt{8\cdot10}=4\sqrt{5}\left(cm\right)\end{matrix}\right.\)