K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 9 2018

*Tam giác ABC có ∠(BAC) = 90o

Vì CA là đường cao xuất phát từ đỉnh C; BA là đường cao xuất phát từ đỉnh B

Và hai đường cao này cắt nhau tại A nên A là trực tâm của ΔABC.

*Tam giác AHB có ∠(AHB) = 90o

Vì AH là đường cao xuất phát từ đỉnh A, BH là đường cao xuất phát từ đỉnh B và giao điểm của hai đường này là H.

Vậy H là trực tâm của ΔAHB.

*Tam giác AHC có ∠(AHC) = 90o

Vì AH là đường cao xuất phát từ đỉnh A, CH là đường cao xuất phát từ đỉnh C và giao điểm của hai đường này là H.

Vậy H là trực tâm của ΔAHC.

Trực tâm của ΔABC là đỉnh A

Trực tâm của ΔAHB là đỉnh H

Trực tâm của ΔAHC là đỉnh H

Xét ΔACB có

AK,BN là các đườg cao

AK cắt BN tại M

=>M là trực tâm

a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có

AB=AC

AH chung

=>ΔAHB=ΔAHC

=>HB=HC

b: góc MAH=góc BAH

góc BAH=góc MHA

=>góc MAH=góc MHA

=>ΔMAH cân tại M

c: Xét ΔACB có

H la trung điểm của CB

HM//AB

=>M là trung điểm của AC

=>B,G,M thẳng hàng

Hnay có nhiều tamgiac vuông ghê :)), ko vẽ nổi đg cao tại vì tớ ko bt vẽ trên này.

A B C P/S : t/c minh họa H G

a, Bỏ qua đi >:

b, Xét \(\Delta\)AHB và \(\Delta\)AHC ta có 

^AHB = ^AHC = 90^0 

AH_chung 

AB = AC (gt)

=> \(\Delta\)AHB = \(\Delta\)AHC (ch-cgn)

b, Xét \(\Delta\)ABH có ^H = 90^0

AB = 10cm ; \(BH=\frac{BC}{2}=\frac{12}{2}=6\)cm

Aps dụng đinh lí Py ta go ta có : 

\(AB^2=BH^2+AH^2\)

\(\Leftrightarrow AH^2=AB^2-BH^2\Leftrightarrow AH^2=100-36=84\Leftrightarrow AH=8\)cm 

c, Vì \(\Delta\)ABC cân tại A

=> AH là đường cao đồng thời là đường trung truyến 

Mà G là trọng tâm của \(\Delta\)ABC 

=> G \(\in\)AH

Hay 3 điểm A;G;H thẳng hàng 

sh-cgn )): cho xin lỗi ... ẩu quá 

Sửa thành : ch-cgv bn nhé !