K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 11 2023

a) Theo tính chất của 2 tiếp tuyến cắt nhau \(\left\{{}\begin{matrix}AD=BD\\AE=CE\end{matrix}\right.\) 

\(\Rightarrow\dfrac{AD}{AE}=\dfrac{BD}{CE}=\dfrac{ID}{IC}\)

\(\Rightarrow\) AI//CE. 

Mà \(CE\perp BC\) nên \(AI\perp BC\)

Lại có \(AH\perp BC\) \(\Rightarrow\) A, I, H thẳng hàng (đpcm)

b) Theo định lý Thales, ta có \(\dfrac{AI}{CE}=\dfrac{DA}{DE}\) và \(\dfrac{IH}{CE}=\dfrac{BH}{BC}\)

Mặt khác, \(\dfrac{DA}{DE}=\dfrac{BH}{BC}\) (đl Thales trong hình thang)

\(\Rightarrow\dfrac{AI}{CE}=\dfrac{IH}{CE}\) \(\Rightarrow AI=IH\) (đpcm)

c) Ta có \(\dfrac{DB}{DE}=\dfrac{DA}{DE}=\dfrac{AI}{CE}\) \(\Rightarrow DB.CE=DE.AI\) (đpcm)

21 tháng 10 2023

 

 a) và b) Gọi \(P=CA\cap BD,Q=BA\cap CE\)

 Tam giác ABP vuông tại A \(\Rightarrow\widehat{DAP}=90^o-\widehat{DAB}\) và \(\widehat{P}=90^o-\widehat{DBA}\)

 Dễ thấy tam giác DAB cân tại D nên \(\widehat{DAB}=\widehat{DBA}\). Từ đó suy ra \(\widehat{DAP}=\widehat{P}\) hay tam giác DAP cân tại D \(\Rightarrow DA=DB=DP\) hay D là trung điểm BP. Tương tự, ta có E là trung điểm CQ.

 Gọi \(I'=CD\cap AH\). Khi đó áp dụng bổ đề hình thang cho hình thang AHBP, ta có ngay I' là trung điểm AH. Lại áp dụng bổ đề hình thang lần nữa cho hình thang AHCQ, ta thấy B, I, E thẳng hàng (*)

 (*) Bổ đề hình thang phát biểu rằng: Trong 1 hình thang, 2 trung điểm của 2 cạnh đáy, giao điểm 2 đường chéo và giao điểm của 2 đường thẳng chứa 2 cạnh bên của nó thẳng hàng.

 Do đó \(I'\equiv I\), suy ra I, A, H thẳng hàng, đồng thời \(IA=IH\)

 c) Theo Thales: \(\dfrac{DA}{DE}=\dfrac{AI}{EC}\) \(\Rightarrow DE.AI=DA.EC\). Mà \(DA=DB\) (tính chất 2 tiếp tuyến cắt nhau) nên ta có đpcm.

21 tháng 10 2023

Thanks anh/chị Lê Song Phương nhiều ạ, nhờ có chị mà em hiểu rõ hơn về toán lớp 9 r ạ!#

31 tháng 12 2022

a: Xét (A) có

BD,BH là các tiếp tuyến

nên BD=BH và AB là phân giác của góc HAD(1)

Xét (A) có

CH,CE là các tiếp tuyến

nên CH=CE và AC là phân giác của góc HAE(2)

BH+CH=BC

=>BC=CE+BD

b: Từ (1), (2) suy ra góc DAE=2*90=180 độ

=>D,A,E thẳng hàng

c: Gọi M là trung điểm của BC

Xét hình thang BDEC có

M,A lần lượt là trung điểm của BC,DE

nên MA là đường trung bình

=>MA//CE//BD

=>MA vuông góc với BC

=>DE là tiếp tuyến của (M)

a: Xét tứ giác OAIC có 

\(\widehat{OAI}+\widehat{OCI}=180^0\)

Do đó: OAIC là tứ giác nội tiếp

Xét (O) có

IC là tiếp tuyến

IA là tiếp tuyến

Do đó: OI là tia phân giác của góc COA

Ta có: ΔOAC cân tại O

mà OI là đường phân giác

nên OI⊥AC(1)

Xét (O) có

ΔACB nội tiếp

AB là đường kính

Do đó: ΔACB vuông tại C

Suy ra: CA⊥CB(2)

Từ (1) và (2) suy ra CB//OI

Câu b đề thiếu rồi bạn

Câu c đề sai bởi vì ΔACB vuông tại C rồi nên nếu đường cao AH thì H trùng với C rồi bạn

a: BC vuông góc AH tại H

nên BC là tiếp tuyến của (A)

b: Xét (A) có

BH,BE là tiếp tuyến

nên AB là phân giác của góc HAE(1)

Xét (A) có

CF,CH là tiếp tuyến

nên AC là phân giác của góc HAF(2)

Từ (1), (2) suy ra góc FAE=2*90=180 độ

=>F,A,E thẳng hàng

c: \(AH=\sqrt{4\cdot9}=6\left(cm\right)\)