K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 3 2017

A B C H N M

Bài này xét từng cặp tam giác thôi.

a) Xét \(\Delta ABH\)và \(\Delta ACH\)có:

\(AH\): chung

\(\widehat{AHB}=\widehat{AHC}=90\)độ

\(\widehat{ABH}=\widehat{ACH}\)( cùng phụ \(\widehat{BAC}\))

\(\Rightarrow\Delta ABH=\Delta ACH\left(g.c.g\right)\)

\(\Rightarrow HB=HC\)(hai cạnh t.ứng)

Mấy câu sau bạn làm nốt. Gợi ý xét:

b) \(\Delta AHN\)và \(\Delta CHN\)

c) \(\Delta MBH\)và \(\Delta MAH\)

d) Câu này có 2 cách: chứng minh hình chữ nhật => chiều dài > chiều rộng hay cũng cm hình chữ nhật => song song => cặp góc bằng nhau ở vị trí so le trong hoặc đồng vị => xét bình thường như các câu kia.

Tuy nhiên nên chọn cách 2 vì cách 1 chiều dài > chiều rộng đôi khi không đúng thế. Vì có thể chiều dài nhỏ hơn hoặc bằng chiều rộng

Nếu cm cách 2 thì làm như sau:

Xét tứ giác \(AMHN\)có: \(\hept{\begin{cases}\widehat{HMA}=90\\MAN=90\\HNA=90\end{cases}}\)(gt)

\(\Rightarrow AMHN\)là hình chữ nhật

\(\Rightarrow MH\)// \(AN\)

\(\Rightarrow\widehat{MHA}=\widehat{HAN}\left(slt\right)\)

Sau đó xét \(\Delta MHA\)và \(\Delta HAN\)nhé.

Ps: Nhớ check lại.

7 tháng 3 2017

AH vuông góc vs BC mà

19 tháng 2 2020

a,Xét tam giái AMO và tam giác ANO, ta có:
+ Góc M = góc N =90 ( gt)
+ Có cạnh AO chung
==> hai tam giác này bằng nhau
b, Vì tam giác AMO = tam giác ANO nên góc MAO = góc NAO 
==> AO là tia phân giác của góc A
Hay AH là tia phân giác của góc A vì A, H, O thẳng hàng.

20 tháng 4 2016

a,Áp dụng định lý Pi-ta-go , ta có :

AB^2+AC^2=BC^2

12^2+AC^2=20^2

144+AC^2=400

AC^2=400-144

AC^2=256

\(\Rightarrow AC=\sqrt{256}=16\)

Ta có : BC>AC>AB

=> góc Â>B>C

b, Xét tg BAD và tg BHD vuông tại H

Có : AH=HD ( 2 tia đối )

B là góc chung

=> tg BAD = tg BHD 

=> BA=BD ( hai cạnh tương ứng)

Mà : trong tg BAD có BA=BD

=> tg BAD cân

c và d : k pt lm

a) Áp dụng định lí Pytago vào ΔAHB vuông tại H, ta được:

\(AB^2=AH^2+HB^2\)

\(\Leftrightarrow AB^2=6^2+8^2=100\)

hay AB=10(cm)

Áp dụng định lí Pytago vào ΔAHC vuông tại H, ta được:

\(AC^2=AH^2+HC^2\)

\(\Leftrightarrow AC^2=6^2+10^2=136\)

hay \(AC=2\sqrt{34}cm\)

Ta có: AB=10cm

\(AC=2\sqrt{34}cm\)

mà \(10cm< 2\sqrt{34}cm\)

nên AB<AC